Câu hỏi:

13/07/2024 7,357

Tìm giá trị nhỏ nhất của hàm số f(x) = x4 − 10x2 + 2 trên đoạn [−1;2].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: f(x) = x4 − 10x2 + 2

Û f′(x) = 4x3 − 20x

f′(x) = 0 Û 4x3 − 20x = 0

Û 4x(x2 − 5) = 0

x=0[1;2]x=5[1;2]x=5[1;2]

Ta có:  f(1)=7f(0)=2f(2)=22

Vậy  min[1;2]  f(x)=22.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

y = −x2

Với x = 0 y = 0, với x = ±1 y = −1

Đồ thị hàm số y = −x² có đỉnh là (0;0) và đi qua 2 điểm (1;−1) và (−1;−1)

y = x − 2

Với x = 0 y = −2, với y = 0 x = 2

Đồ thị hàm số y = x − 2 đi qua điểm (0;−2) và (2;0)

Đồ thị của hai hàm số như hình vẽ.

Vẽ đồ thị các hàm số y = –x ² và y = x – 2 trên cùng một hệ trục tọa độ.  (ảnh 1)

Lời giải

Xét phương trình:

f'(x) = x2(x − 1)(x + 2)2(x − 2) = 0

x=0x=1x=2x=2

Hàm số đã cho không đạt cực trị tại điểm x = 0 vì là nghiệm bội hai của phương trình  f'(x) = 0.

Vậy hàm số đã cho có 3 điểm cực trị.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP