Câu hỏi:
13/07/2024 1,508Một nhà khoa học đã nghiên cứu về tác động phối hợp của hai loại Vitamin A và B đã thu được kết quả như sau: Trong một ngày, mỗi người cần từ 400 đến 1000 đơn vị Vitamin cả A lẫn B và có thể tiếp nhận không quá 600 đơn vị vitamin A và không quá 500 đơn vị vitamin B. Do tác động phối hợp của hai loại vitamin trên nên mỗi ngày một người sử dụng số đơn vị vitamin B không ít hơn một nửa số đơn vị vitamin A và không nhiều hơn ba lần số đơn vị vitamin A. Tính số đơn vị vitamin mỗi loại ở trên để một người dùng mỗi ngày sao cho chi phí rẻ nhất, biết rằng mỗi đơn vị vitamin A có giá 9 đồng và mỗi đơn vị vitamin B có giá 7,5 đồng.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi x ³ 0, y ³ 0 lần lượt là số đơn vị vitamin A và B để một người cần dùng trong một ngày.
Trong một ngày, mỗi người cần từ 400 đến 1000 đơn vị vitamin cả A lẫn B nên ta có: 400 ≤ x + y ≤ 1000.
Hàng ngày, tiếp nhận không quá 600 đơn vị vitamin A và không quá 500 đơn vị vitamin B nên ta có: x ≤ 600, y ≤ 500.
Mỗi ngày một người sử dụng số đơn vị vitamin B không ít hơn một nửa số đơn vị vitamin A và không nhiều hơn ba lần số đơn vị vitamin A nên ta có: 0,5x ≤ y ≤ 3x.
Số tiền cần dùng mỗi ngày là: T (x, y) = 9x + 7,5.
Bài toán trở thành:
Tìm x ³ 0, y ³ 0 thỏa mãn hệ: để T (x, y) = 9x + 7,5y đạt giá trị nhỏ nhất.
Biểu diễn miền nghiệm của hệ trên mặt phẳng tọa độ như hình vẽ trên.
Miền nghiệm là lục giác ABCDEF với:
Thay tọa độ các điểm A, B, C, D, E, F vào biểu thức T (x, y) = 9x + 7,5y và tìm GTNN của nó ta được:
T (600; 300) = 7650, T (600; 400) = 8400, T (500; 500) = 8250
Suy ra min T (x; y) = 3150 khi x = 100; y = 300.
Vậy mỗi ngày, một người dùng 100 đơn vị Vitamin A, 300 đơn vị Vitamin B để chi phí rẻ nhất.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Bạn An kinh doanh hai mặt hàng handmade là vòng tay và vòng đeo cổ. Mỗi vòng tay làm trong 4 giờ, bán được 40 ngàn đồng. Mỗi vòng đeo cổ làm trong 6 giờ, bán được 80 ngàn đồng. Mỗi tuần bạn An bán được không quá 15 vòng tay và 4 vòng đeo cổ. Tính số giờ tối thiểu trong tuần An cần dùng để bán được ít nhất 400 ngàn đồng.
Câu 2:
Một nhà máy sản xuất, sử dụng ba loại máy đặc chủng để sản xuất sản phẩm A và sản phẩm B trong một chu trình sản xuất. Để sản xuất một tấn sản phẩm A lãi 4 triệu đồng người ta sử dụng máy I trong 1 giờ, máy II trong 2 giờ và máy III trong 3 giờ. Để sản xuất ra một tấn sản phẩm B lãi được 3 triệu đồng người ta sử dụng máy I trong 6 giờ, máy II trong 3 giờ và máy III trong 2 giờ. Biết rằng máy I chỉ hoạt động không quá 36 giờ, máy hai hoạt động không quá 23 giờ và máy III hoạt động không quá 27 giờ. Hãy lập kế hoạch sản xuất cho nhà máy để tiền lãi được nhiều nhất.
Câu 3:
Tìm giá trị nhỏ nhất của biểu thức F = y − x trên miền xác định bởi hệ .
Câu 5:
Cho góc . Gọi A và B là hai điểm di động lần lượt trên Ox và Oy sao cho AB = 2. Tính độ dài lớn nhất của đoạn OB.
Câu 6:
Một của hàng buôn giày nhập một đôi với giá là 40 USD. Cửa hàng ước tính rằng nếu đôi giày được bán với giá x USD thì mỗi tháng khách hàng sẽ mua (120 − x) đôi. Hỏi cửa hàng bán một đôi giày giá bao nhiêu thì thu được nhiều lãi nhất?
về câu hỏi!