Câu hỏi:

19/08/2025 556 Lưu

Tìm giá trị nhỏ nhất của biểu thức F = y − x trên miền xác định bởi hệ  y2x22yx4x+y5.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Tìm giá trị nhỏ nhất của biểu thức F  y − x trên miền xác định bởi hệ  . (ảnh 1)

Miền nghiệm của hệ  y2x22yx4x+y5 là miền trong của tam giác ABC kể cả biên (như hình vẽ trên)

Ta thấy F = y − x đạt giá trị nhỏ nhất chỉ có thể tại các điểm A, B, C.

Tại A(0; 2) thì F = 2 − 0 = 2

Tại B(1; 4) thì F = 4 − 1 = 3

Tại C(2; 3) thì F = 3 − 2 = 1

Vậy min F = 1 khi x = 2, y = 3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có cosx = 1 x = k2π (k ℤ).

Vậy nghiệm của phương trình cosx = 1 là x = k2π (k ℤ).

Lời giải

Một nhà máy sản xuất, sử dụng ba loại máy đặc chủng để sản xuất sản phẩm A và sản phẩm B trong một chu trình sản xuất. Để sản xuất một tấn sản phẩm A lãi 4 triệu đồng người ta sử dụng máy I trong 1 giờ, máy II trong 2 giờ và máy III trong 3 giờ. Để sản xuất ra một tấn sản phẩm B lãi được 3 triệu đồng người ta sử dụng máy I trong 6 giờ, máy II trong 3 giờ và máy III trong 2 giờ. Biết rằng máy I chỉ hoạt động không quá 36 giờ, máy hai hoạt động không quá 23 giờ và máy III hoạt động không quá 27 giờ. Hãy lập kế hoạch sản xuất cho nhà máy để tiền lãi được nhiều nhất. (ảnh 1)

Gọi x ≥ 0, y ≥ 0 (tấn) là sản lượng cần sản xuất của sản phẩm A và sản phẩm B. 

Ta có:

x + 6y là thời gian hoạt động của máy I.

2x + 3y là thời gian hoạt động của máy II.

3x + 2y là thời gian hoạt động của máy III.

Số tiền lãi của nhà máy: T = 4x + 3y (triệu đồng).

Bài toán trở thành:

Tìm x ≥ 0, y ≥ 0 thỏa mãn  x+6y362x+3y233x+2y27 để T = 4x + 3y đạt giá trị lớn nhất.

 

Miền nghiệm của hệ là ngũ giác OABCD, ở đó:

 O0;0,A0;6,B103;499,C7;3,D9;0

Thay tọa độ các điểm vào biểu thức T ta được Tmax = 36 tại x = 7, y = 3.

Vậy nhà máy nên sản xuất 7 tấn sản phẩm A và 3 tấn sản phẩm B để tiền lãi được nhiều nhất.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP