Trong mặt phẳng Oxy, cho đường thẳng d: 2x − y = 0. Phương trình đường thẳng qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm O tỉ số k = −2 và phép đối xứng trục Oy là đường thẳng nào sau đây?
Trong mặt phẳng Oxy, cho đường thẳng d: 2x − y = 0. Phương trình đường thẳng qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm O tỉ số k = −2 và phép đối xứng trục Oy là đường thẳng nào sau đây?
Quảng cáo
Trả lời:
Đáp án đúng là: A
Ta có: V(O; −2) (d) = d' Þ d' // d hoặc d' ≡ d.
Þ d' có dạng: 2x − y + m = 0
Chọn N(1; 2) Î d: V(O; −2) (N) = N'(−2 ; −4) Î d'
Þ 2.(−2) − (−4) + m = 0
Û m = 0
Phương trình đường thẳng d': 2x − y = 0
Qua phép đối xứng trục Oy: DOy (d') = d''
M(x; y) Î d' Þ DOy (M) = M'(x'; y') Î d''

Þ 2(−x)' − y' = 0
Suy ra phương trình ảnh d'' cần tìm là: −2x − y = 0.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có cosx = 1 ⇔ x = k2π (k ∈ ℤ).
Vậy nghiệm của phương trình cosx = 1 là x = k2π (k ∈ ℤ).
Lời giải

Gọi x ≥ 0, y ≥ 0 (tấn) là sản lượng cần sản xuất của sản phẩm A và sản phẩm B.
Ta có:
x + 6y là thời gian hoạt động của máy I.
2x + 3y là thời gian hoạt động của máy II.
3x + 2y là thời gian hoạt động của máy III.
Số tiền lãi của nhà máy: T = 4x + 3y (triệu đồng).
Bài toán trở thành:
Tìm x ≥ 0, y ≥ 0 thỏa mãn để T = 4x + 3y đạt giá trị lớn nhất.
Miền nghiệm của hệ là ngũ giác OABCD, ở đó:
Thay tọa độ các điểm vào biểu thức T ta được Tmax = 36 tại x = 7, y = 3.
Vậy nhà máy nên sản xuất 7 tấn sản phẩm A và 3 tấn sản phẩm B để tiền lãi được nhiều nhất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.