Câu hỏi:
15/09/2023 13,095
Cho hàm số f(x) có bảng biến thiên như sau:
Số nghiệm thuộc đoạn [-π; 2π] của phương trình 2f(sin x) + 3 = 0 là:
Cho hàm số f(x) có bảng biến thiên như sau:
![Cho hàm số f(x) có bảng biến thiên như sau: Số nghiệm thuộc đoạn [π; 2π] của phương trình 2f(sin x) + 3 = 0 là: A. 4. B. 6. C. 3. D. 8. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2023/09/blobid5-1694745831.png)
Số nghiệm thuộc đoạn [-π; 2π] của phương trình 2f(sin x) + 3 = 0 là:
Quảng cáo
Trả lời:
Đáp án đúng là: B
Phương trình ⇔ (*) có nghiệm trên [-π; 2π]
⇔ đường thẳng cắt đồ thị hàm số y = f(sin x) tại các điểm trên [-π; 2π].
Đặt sin x = t ⇒ x ∈ [-π; 2π] ⇒ t ∈ [-1; 1].
Ta có bảng biến thiên:
![Cho hàm số f(x) có bảng biến thiên như sau: Số nghiệm thuộc đoạn [π; 2π] của phương trình 2f(sin x) + 3 = 0 là: A. 4. B. 6. C. 3. D. 8. (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2023/09/blobid6-1694745883.png)
Ta có (*) ⇔
![Cho hàm số f(x) có bảng biến thiên như sau: Số nghiệm thuộc đoạn [π; 2π] của phương trình 2f(sin x) + 3 = 0 là: A. 4. B. 6. C. 3. D. 8. (ảnh 3)](https://video.vietjack.com/upload2/quiz_source1/2023/09/blobid7-1694745952.png)
Dựa vào đồ thị hàm số ta thấy:
• Đường thẳng y = t1 cắt đồ thị hàm số y = sin x tại hai điểm phân biệt trong [-π; 2π].
• Đường thẳng y = t2 cắt đồ thị hàm số y = sin x tại bốn điểm phân biệt trong [-π; 2π].
Như vậy đường thẳng cắt đồ thị hàm số y = f(sin x) tại 6 điểm phân biệt trên [-π; 2π].
Vậy phương trình đã cho có 6 nghiệm phân biệt.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C

Số học sinh giỏi toán, lý mà không giỏi hóa: 3 – 1 = 2.
Số học sinh giỏi toán, hóa mà không giỏi lý: 4 – 1 = 3.
Số học sinh giỏi hóa, lý mà không giỏi toán: 2 – 1 = 1.
Số học sinh chỉ giỏi môn lý: 5 – 2 – 1 – 1 = 1.
Số học sinh chỉ giỏi môn hóa: 6 – 3 – 1 – 1 = 1.
Số học sinh chỉ giỏi môn toán: 7 – 3 – 2 – 1 = 1.
Số học sinh giỏi ít nhất một (môn toán, lý, hóa) là số học sinh giỏi 1 môn hoặc 2 môn hoặc cả 3 môn: 1 + 1 + 1 + 1 + 2 + 3 + 1 = 10.
Lời giải
Gọi x (triệu) đồng là số tiền mà doanh nghiệp A dự định giảm giá (0 ≤ x ≤ 4).
Khi đó:
Lợi nhuận thu được khi bán một chiếc xe là 31 – x – 27 = 4 – x (triệu đồng).
Số xe mà doanh nghiệp sẽ bán được trong một năm là 600 + 200x (chiếc).
Lợi nhuận mà doanh nghiệp thu được trong một năm là
f(x) = (4 − x)(600 + 200x) = −200x2 + 200x + 2400.
Xét hàm số f(x) = −200x2 + 200x + 2400 trên đoạn [0; 4] có bảng biến thiên:

Vậy ⇔
Vậy giá mới của chiếc xe là 30,5 triệu đồng thì lợi nhuận thu được là cao nhất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.