Câu hỏi:

15/09/2023 399

Với các chữ số 0; 1; 2; 3; 4; 5 có thể lập được bao nhiêu số gồm 8 chữ số, trong đó chữ số 1 có mặt 3 lần, mỗi chữ số khác có mặt đúng 1 lần.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Do chữ số 1 có mặt 3 lần nên ta coi như tìm các số thỏa mãn đề bài được tạo nên từ 8 số 0; 1; 1; 1; 2; 3; 4; 5.

Với các chữ số 0; 1; 2; 3; 4; 5 có thể lập được bao nhiêu số gồm 8 chữ số, trong đó chữ số 1 có mặt 3 lần, mỗi chữ số khác có mặt đúng 1 lần. A. 35 280 số. B. 40 320 số. C. 5 880 số. D. 840 số. (ảnh 1)

Chọn số cho ô đầu tiên có 7 cách.

Chọn số cho ô thứ hai có 7 cách.

Chọn số cho ô thứ 8 có 1 cách.

Suy ra có 7.7.6.5.4.3.2.1 = 7.7!  cách xếp 8 chữ số 0; 1; 1; 1; 2; 3; 4; 5 vào 8 ô.

Mặt khác chữ số 1 lặp lại 3 lần nên số cách xếp là  7.7!3!=5  880 số.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương trình hoành độ giao điểm mx2 = −3x + 1

mx2 + 3x 1 = 0 (

Ta có Δ = 9 + 4m;  P=x1.x2=1m với x1; x2 là hai nghiệm của phương trình (*).

Đường thẳng d cắt (P) tại hai điểm phân biệt nằm cùng một phía với trục tung 

 Phương trình (*) có hai nghiệm phân biệt cùng dấu

 Δ>0P>0   4m+9>01m>0   m>94m<0   94<m<0

Vậy  94<m<0.

Lời giải

Không gian mẫu Ω là tập các hoán vị của 6 phần tử, ta có: |Ω| = 6! = 720

Gọi A là biến cố nam và nữ ngồi xen kẽ nhau. 

Đánh số ghế từ 1 đến 6.

TH1: Xếp nam vào các ghế 1, 3, 5 có 3! cách, xếp nữ vào các ghế 2, 4, 6 có 3! cách nên có 3!.3! cách.

TH2: Xếp nam vào các ghế 2, 4, 6 và xếp nữ vào các ghế 1, 3, 5 cũng có 3!.3! cách.

Khi đó |A| = 2.3!.3! = 72

Vậy  PA=nAnΩ=72720=110.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP