Câu hỏi:

15/09/2023 708 Lưu

Từ các chữ số 0; 1; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số chẵn, mỗi số có 5 chữ số khác nhau trong đó có đúng hai chữ số lẻ và hai chữ số lẻ đứng cạnh nhau?

A. 360.
B. 280.
C. 310.
D. 132.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Gọi A là số tự nhiên có hai chữ số lẻ khác nhau lấy từ các số 0; 1; 2; 3; 4; 5; 6.

Số cách chọn được A là  A32=6. Số chẵn có 5 chữ số mà hai số lẻ đứng kề nhau phải chứa A và ba trong 4 chữ số 0; 2; 4; 6.

Gọi  abcd¯; a, b, c, d {A; 0; 2; 4; 6} là số thỏa mãn yêu cầu bài toán.

· TH1: Nếu a = A có 1 cách chọn a và  A43 cách chọn b, c, d.

· TH2: a ≠ A có 3 cách chọn a.

+ Nếu b = A có 1 cách chọn b và  A32 cách chọn c, d.

+ Nếu c = A có 1 cách chọn c và  A32 cách chọn b, d.

Vậy có  A32A43+31.A32+1.A32=360 số thỏa mãn yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương trình hoành độ giao điểm mx2 = −3x + 1

mx2 + 3x 1 = 0 (

Ta có Δ = 9 + 4m;  P=x1.x2=1m với x1; x2 là hai nghiệm của phương trình (*).

Đường thẳng d cắt (P) tại hai điểm phân biệt nằm cùng một phía với trục tung 

 Phương trình (*) có hai nghiệm phân biệt cùng dấu

 Δ>0P>0   4m+9>01m>0   m>94m<0   94<m<0

Vậy  94<m<0.

Lời giải

Không gian mẫu Ω là tập các hoán vị của 6 phần tử, ta có: |Ω| = 6! = 720

Gọi A là biến cố nam và nữ ngồi xen kẽ nhau. 

Đánh số ghế từ 1 đến 6.

TH1: Xếp nam vào các ghế 1, 3, 5 có 3! cách, xếp nữ vào các ghế 2, 4, 6 có 3! cách nên có 3!.3! cách.

TH2: Xếp nam vào các ghế 2, 4, 6 và xếp nữ vào các ghế 1, 3, 5 cũng có 3!.3! cách.

Khi đó |A| = 2.3!.3! = 72

Vậy  PA=nAnΩ=72720=110.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP