Câu hỏi:
15/09/2023 204Một người mỗi đầu tháng đều đặn gửi vào ngân hàng một khoản tiền T theo hình thức lãi kép với lãi suất 0,6% mỗi tháng. Biết đến cuối tháng thứ 15 thì người đó có số tiền là 10 triệu đồng. Hỏi số tiền T gần với số tiền nào nhất trong các số sau?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: A
Gọi Ak là số tiền người đó đạt được cuối tháng thứ k, đặt r = 0,6%.
Ta có A1 = T(1 + r).
A2 = (A1 + T)(1 + r) = T(1 + r)2 + T(1 + r).
A3 = (A2 + T)(1 + r)
= T(1 + r)3 + T(1 + r)2 + T(1 + r)
...
⇒ đồng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy ABCD là một tứ giác (AB không song song với CD). Gọi M là trung điểm của SD, N là điểm nằm trên cạnh SB sao cho SN = 2NB, O là giao điểm của AC và BD. Giao điểm của MN với (ABCD) là điểm K. Hãy chọn cách xác định điểm K đúng nhất trong bốn phương án sau:
Câu 2:
Tìm tất cả các giá trị của tham số m để phương trình (m – 2).sin2x = m + 1 vô nghiệm.
Câu 3:
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-10; 10] để phương trình có nghiệm?
Câu 4:
Cho hàm số y = (3 – 2m)x + m – 2. Xác định m để đồ thị hàm số cắt trục tung tại điểm có tung độ
Câu 5:
Cho đường thẳng d: y = -3x + 1 và parabol (P): y = mx2 (m ≠ 0). Tìm m để d và (P) cắt nhau tại hai điểm A và B phân biệt và cùng nằm về một phía đối với trục tung.
Câu 7:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J lần lượt là trung điểm của SB và SD. Thiết diện của mặt phẳng (AIJ) với hình chóp là
về câu hỏi!