Câu hỏi:

15/09/2023 317

Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Diện tích S của mặt cầu ngoại tiếp hình lập phương đó là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là C

Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Diện tích S của mặt cầu ngoại  (ảnh 1)

Vì ABCD là hình vuông nên AC = BD

Vì tam giác ABD vuông tại A nên \(B{\rm{D}} = \sqrt {A{B^2} + A{{\rm{D}}^2}} \)

Suy ra \(AC = \sqrt {A{B^2} + A{{\rm{D}}^2}} \)

Vì tam giác AA’C’ vuông tại A’ nên \(AC' = \sqrt {AA{'^2} + A'C{'^2}} \)

Mà A’C’ = AC nên \(AC' = \sqrt {AA{'^2} + A{C^2}} \)

Hình lập phương ABCD.A’B’C’D’ có bán kính mặt cầu ngoại tiếp

\(R = \frac{1}{2}AC' = \frac{1}{2}\sqrt {A{C^2} + A'{A^2}} = \frac{1}{2}\sqrt {A{B^2} + A{D^2} + AA{'^2}} = \frac{1}{2}a\sqrt 3 \)

Diện tích mặt cầu đó là: \(S = 4\pi {R^2} = 4\pi .{\left( {\frac{{a\sqrt 3 }}{2}} \right)^2} = 3\pi {a^2}\)

Vậy ta chọn đáp án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Đánh số thứ tự các ghế như sau: 1; 2; 3; 4; 5; 6

Số cách xếp ngẫu nhiên 6 học sinh vào 6 chiếc ghế là 6! = 720 cách 

Suy ra n(Ω) = 720

Gọi A là biến cố: “Học sinh lớp C chỉ ngồi cạnh học sinh lớp B”

TH1: Học sinh lớp C ngồi giữa 2 học sinh lớp B, ta coi B-C-B là 1 buộc, có 2 cách xếp 2 học sinh lớp B trong buộc này

Số cách xếp buộc B-C-B vào 6 chiếc ghế là 4 cách (Xếp vào các vị trí 1-2-3, 2-3-4, 3-4-5, 4-5-6)

Số cách xếp 3 học sinh còn lại là 3! = 6 cách

Suy ra có 2 . 4 . 6 = 48 cách

TH2: Học sinh lớp C ngồi ghế 1 hoặc 6 

Suy ra có 2 cách

Ứng với mỗi cách xếp học sinh C có 2 cách chọn 1 học sinh B ngồi ở vị trí 2 hoặc 5.

Xếp 4 học sinh còn lại có 4! = 24 cách

Suy ra có 2 . 2 . 24 = 96 cách

Do đó n(A) = 48 + 96 = 144

Xác suất cần tìm là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{144}}{{720}} = \frac{1}{5}\)

Vậy ta chọn đáp án D.

Lời giải

Đáp án đúng là: C

Ta có: \({\left( {\sqrt 5 } \right)^{{x^2} + 4{\rm{x}} + 6}} = {\log _2}128\)

\( \Leftrightarrow {\left( {\sqrt 5 } \right)^{{x^2} + 4{\rm{x}} + 6}} = 7\)

\( \Leftrightarrow {x^2} + 4{\rm{x}} + 6 = {\log _{\sqrt 5 }}7\)

\( \Leftrightarrow {x^2} + 4{\rm{x}} + 6 - {\log _{\sqrt 5 }}7 = 0\)

Ta có \[\Delta = {4^2} - 4.\left( {6 - {{\log }_{\sqrt 5 }}7} \right) > 0\]

Suy ra phương trình đã cho có hai nghiệm phân biệt

Vậy ta chọn đáp án C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP