Câu hỏi:
15/09/2023 211Số nghiệm của phương trình \({\log _3}x = {\log _2}\left( {1 + \sqrt x } \right)\) là:
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).
Quảng cáo
Trả lời:
Đáp án đúng là: C
Điều kiện: x > 0
Đặt \(t = {\rm{lo}}{{\rm{g}}_3}x = {\rm{lo}}{{\rm{g}}_2}\left( {1 + \sqrt x } \right)\) (vì \(1 + \sqrt x > 1 \Rightarrow t = {\rm{lo}}{{\rm{g}}_2}\left( {1 + \sqrt x } \right) > 0\))
\(\begin{array}{l} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = {3^t}}\\{1 + \sqrt x = {2^t}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = {3^t}}\\{x = {{\left( {{2^t} - 1} \right)}^2}}\end{array}} \right.} \right.\\ \Rightarrow {3^t} = {\left( {{2^t} - 1} \right)^2} \Leftrightarrow {3^t} = {4^t} - {2.2^t} + 1\end{array}\)
\(\begin{array}{l} \Leftrightarrow {\left( {\frac{3}{4}} \right)^t} = 1 - 2.{\left( {\frac{1}{2}} \right)^t} + {\left( {\frac{1}{4}} \right)^t}\\ \Leftrightarrow {\left( {\frac{3}{4}} \right)^t} + 2 \cdot {\left( {\frac{1}{2}} \right)^t} - {\left( {\frac{1}{4}} \right)^t} = 1\end{array}\)
Xét hàm số \(f\left( t \right) = {\left( {\frac{3}{4}} \right)^t} + 2 - {\left( {\frac{1}{4}} \right)^t}\) trên (0; +∞) có:
\(\begin{array}{l}f'\left( t \right) = {\left( {\frac{3}{4}} \right)^t}{\rm{ln}}\frac{3}{4} + 2{\left( {\frac{1}{2}} \right)^t}{\rm{ln}}\frac{1}{2} - {\left( {\frac{1}{4}} \right)^t}{\rm{ln}}\frac{1}{4}\\ = {\left( {\frac{3}{4}} \right)^t}{\rm{ln}}\frac{3}{4} + 2{\left( {\frac{1}{2}} \right)^t}{\rm{ln}}\frac{1}{2} + 2 \cdot {\left( {\frac{1}{4}} \right)^t}{\rm{ln}}\frac{1}{2}\end{array}\)
Mà \({\rm{ln}}\frac{3}{4} < 0,{\rm{ln}}\frac{1}{2} < 0\) nên f’(t) < 0; ∀ t > 0
Do đó hàm số f(t) nghịch biến trên (0; +∞)
Dễ thấy f(2) = 1 nên phương trình f(t) = 1 có nghiệm duy nhất t = 2
Suy ra \({\rm{lo}}{{\rm{g}}_3}x = 2 \Leftrightarrow x = 9\)
Vậy ta chọn đáp án C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có 6 chiếc ghế được kê thành một hàng ngang. Xếp ngẫu nhiên 6 học sinh, gồm 3 học sinh lớp A, 2 học sinh lớp B và 1 học sinh lớp C, ngồi vào hàng ghế đó, sao cho mỗi ghế có đúng một học sinh. Xác suất để học sinh lớp C chỉ ngồi cạnh học sinh lớp B bằng
Câu 2:
Phương trình \({\left( {\sqrt 5 } \right)^{{x^2} + 4{\rm{x}} + 6}} = {\log _2}128\) có bao nhiêu nghiệm?
Câu 3:
Người ta sử dụng 7 cuốn sách Toán, 8 cuốn sách Vật lí, 9 cuốn sách Hóa học (các cuốn sách cùng loại giống nhau) để làm phần thưởng cho 12 học sinh, mỗi học sinh được 2 cuốn sách khác loại. Trong số 12 học sinh trên có hai bạn Tâm và Huy. Tính xác suất để hai bạn Tâm và Huy có phần thưởng giống nhau.
Câu 4:
Có bao nhiêu giá trị nguyên dương của m để hàm số y = ln(x3 – 3m2x + 72m) xác định trên (0; +∞).
Câu 5:
Cho hình chóp tứ giác đều có góc giữa mặt bên và mặt đáy bằng 60°. Biết rằng mặt cầu ngoại tiếp hình chóp đó có bán kính \(R = a\sqrt 3 \). Tính độ dài cạnh đáy của hình chóp tứ giác đều nói trên.
Câu 6:
Tìm tất cả các giá trị thực của tham số m để phương trình 3x = m có nghiệm thực:
Câu 7:
Biết đường thẳng d tiếp xúc với (P): y = 2x2 – 5x + 3. Phương trình của d là đáp án nào sau đây?
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
về câu hỏi!