Câu hỏi:
15/09/2023 908
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B và BC = a. Cạnh bên SA vuông góc với đáy (ABC). Gọi H, K lần lượt là hình chiếu vuông góc của A lên SB và SC. Thể tích của khối cầu ngoại tiếp hình chóp A.HKCB bằng:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B và BC = a. Cạnh bên SA vuông góc với đáy (ABC). Gọi H, K lần lượt là hình chiếu vuông góc của A lên SB và SC. Thể tích của khối cầu ngoại tiếp hình chóp A.HKCB bằng:
Quảng cáo
Trả lời:
Đáp án đúng là: B

Gọi O là trung điểm của AC
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC \bot SA}\\{BC \bot AB}\end{array} \Rightarrow BC \bot (SAB) \Rightarrow BC \bot AH} \right.\)
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{AH \bot SB}\\{AH \bot BC}\end{array} \Rightarrow AH \bot (SBC) \Rightarrow AH \bot HC} \right.\)
Suy ra tam giác AHC vuông tại H
Do đó H thuộc mặt cầu tâm \({\rm{O}}\) đường kính AC
Vì tam giác AKC vuông tại K nên K thuộc mặt cầu tâm \({\rm{O}}\) đường kính AC
Vì tam giác ABC vuông tại B nên B thuộc mặt cầu tâm \({\rm{O}}\) đường kính AC
Suy ra 5 điềm A, H, K, B, C đều thuộc mặt cầu tâm O đường kính AC hay khối chóp A.HKCB nội tiếp mặt cầu tâm O đường kính AC
Khi đó bán kính mặt cầu là: \(R = \frac{{AC}}{2}\)
Tam giác \({\rm{ABC}}\) vuông cân tại B và BC = a \( \Rightarrow AC = a\sqrt 2 \Rightarrow R = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{2}\)
Suy ra thể tích của khối cầu ngoại tiếp hình chóp A.HKCB là:
\(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi \cdot {\left( {\frac{{a\sqrt 2 }}{2}} \right)^3} = \frac{{\pi {a^3}\sqrt 2 }}{3}\)
Vậy ta chọn đáp án B.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Đánh số thứ tự các ghế như sau: 1; 2; 3; 4; 5; 6
Số cách xếp ngẫu nhiên 6 học sinh vào 6 chiếc ghế là 6! = 720 cách
Suy ra n(Ω) = 720
Gọi A là biến cố: “Học sinh lớp C chỉ ngồi cạnh học sinh lớp B”
TH1: Học sinh lớp C ngồi giữa 2 học sinh lớp B, ta coi B-C-B là 1 buộc, có 2 cách xếp 2 học sinh lớp B trong buộc này
Số cách xếp buộc B-C-B vào 6 chiếc ghế là 4 cách (Xếp vào các vị trí 1-2-3, 2-3-4, 3-4-5, 4-5-6)
Số cách xếp 3 học sinh còn lại là 3! = 6 cách
Suy ra có 2 . 4 . 6 = 48 cách
TH2: Học sinh lớp C ngồi ghế 1 hoặc 6
Suy ra có 2 cách
Ứng với mỗi cách xếp học sinh C có 2 cách chọn 1 học sinh B ngồi ở vị trí 2 hoặc 5.
Xếp 4 học sinh còn lại có 4! = 24 cách
Suy ra có 2 . 2 . 24 = 96 cách
Do đó n(A) = 48 + 96 = 144
Xác suất cần tìm là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{144}}{{720}} = \frac{1}{5}\)
Vậy ta chọn đáp án D.
Lời giải
Đáp án đúng là: C
Ta có: \({\left( {\sqrt 5 } \right)^{{x^2} + 4{\rm{x}} + 6}} = {\log _2}128\)
\( \Leftrightarrow {\left( {\sqrt 5 } \right)^{{x^2} + 4{\rm{x}} + 6}} = 7\)
\( \Leftrightarrow {x^2} + 4{\rm{x}} + 6 = {\log _{\sqrt 5 }}7\)
\( \Leftrightarrow {x^2} + 4{\rm{x}} + 6 - {\log _{\sqrt 5 }}7 = 0\)
Ta có \[\Delta = {4^2} - 4.\left( {6 - {{\log }_{\sqrt 5 }}7} \right) > 0\]
Suy ra phương trình đã cho có hai nghiệm phân biệt
Vậy ta chọn đáp án C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.