Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B và BC = a. Cạnh bên SA vuông góc với đáy (ABC). Gọi H, K lần lượt là hình chiếu vuông góc của A lên SB và SC. Thể tích của khối cầu ngoại tiếp hình chóp A.HKCB bằng:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B và BC = a. Cạnh bên SA vuông góc với đáy (ABC). Gọi H, K lần lượt là hình chiếu vuông góc của A lên SB và SC. Thể tích của khối cầu ngoại tiếp hình chóp A.HKCB bằng:
Quảng cáo
Trả lời:

Đáp án đúng là: B

Gọi O là trung điểm của AC
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC \bot SA}\\{BC \bot AB}\end{array} \Rightarrow BC \bot (SAB) \Rightarrow BC \bot AH} \right.\)
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{AH \bot SB}\\{AH \bot BC}\end{array} \Rightarrow AH \bot (SBC) \Rightarrow AH \bot HC} \right.\)
Suy ra tam giác AHC vuông tại H
Do đó H thuộc mặt cầu tâm \({\rm{O}}\) đường kính AC
Vì tam giác AKC vuông tại K nên K thuộc mặt cầu tâm \({\rm{O}}\) đường kính AC
Vì tam giác ABC vuông tại B nên B thuộc mặt cầu tâm \({\rm{O}}\) đường kính AC
Suy ra 5 điềm A, H, K, B, C đều thuộc mặt cầu tâm O đường kính AC hay khối chóp A.HKCB nội tiếp mặt cầu tâm O đường kính AC
Khi đó bán kính mặt cầu là: \(R = \frac{{AC}}{2}\)
Tam giác \({\rm{ABC}}\) vuông cân tại B và BC = a \( \Rightarrow AC = a\sqrt 2 \Rightarrow R = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{2}\)
Suy ra thể tích của khối cầu ngoại tiếp hình chóp A.HKCB là:
\(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi \cdot {\left( {\frac{{a\sqrt 2 }}{2}} \right)^3} = \frac{{\pi {a^3}\sqrt 2 }}{3}\)
Vậy ta chọn đáp án B.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Đánh số thứ tự các ghế như sau: 1; 2; 3; 4; 5; 6
Số cách xếp ngẫu nhiên 6 học sinh vào 6 chiếc ghế là 6! = 720 cách
Suy ra n(Ω) = 720
Gọi A là biến cố: “Học sinh lớp C chỉ ngồi cạnh học sinh lớp B”
TH1: Học sinh lớp C ngồi giữa 2 học sinh lớp B, ta coi B-C-B là 1 buộc, có 2 cách xếp 2 học sinh lớp B trong buộc này
Số cách xếp buộc B-C-B vào 6 chiếc ghế là 4 cách (Xếp vào các vị trí 1-2-3, 2-3-4, 3-4-5, 4-5-6)
Số cách xếp 3 học sinh còn lại là 3! = 6 cách
Suy ra có 2 . 4 . 6 = 48 cách
TH2: Học sinh lớp C ngồi ghế 1 hoặc 6
Suy ra có 2 cách
Ứng với mỗi cách xếp học sinh C có 2 cách chọn 1 học sinh B ngồi ở vị trí 2 hoặc 5.
Xếp 4 học sinh còn lại có 4! = 24 cách
Suy ra có 2 . 2 . 24 = 96 cách
Do đó n(A) = 48 + 96 = 144
Xác suất cần tìm là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{144}}{{720}} = \frac{1}{5}\)
Vậy ta chọn đáp án D.
Lời giải
Đáp án đúng là: C
Ta có: \({\left( {\sqrt 5 } \right)^{{x^2} + 4{\rm{x}} + 6}} = {\log _2}128\)
\( \Leftrightarrow {\left( {\sqrt 5 } \right)^{{x^2} + 4{\rm{x}} + 6}} = 7\)
\( \Leftrightarrow {x^2} + 4{\rm{x}} + 6 = {\log _{\sqrt 5 }}7\)
\( \Leftrightarrow {x^2} + 4{\rm{x}} + 6 - {\log _{\sqrt 5 }}7 = 0\)
Ta có \[\Delta = {4^2} - 4.\left( {6 - {{\log }_{\sqrt 5 }}7} \right) > 0\]
Suy ra phương trình đã cho có hai nghiệm phân biệt
Vậy ta chọn đáp án C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.