Câu hỏi:
18/09/2023 791Tứ diện SABC có SA, SB, SC đôi một vuông góc, SA = SB = 2a, SC = 4a. Thể tích khối cầu ngoại tiếp tứ diện SABC là:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: D
Gọi H là trung điểm của AB và M là trung điểm của SC
Suy ra \[{\rm{S}}M = MC = \frac{1}{2}SC = \frac{{{\rm{4a}}}}{2} = 2{\rm{a}}\]
Vì tam giác SAB vuông cân tại S nên H là tâm đường tròn ngoại tiếp tam giác SAD
Từ H kẻ đường thẳng d vuông góc với mặt phẳng (SAB), từ M kẻ đường thẳng d’ là trung trực của SC
Gọi giao điểm của d và d’ là I suy ra IA = IB = IC = IS
Do đó I là tâm mặt cầu ngoại tiếp tứ diện S.ABC
Vì tam giác SAB vuông tại S nên \(AB = \sqrt {S{A^2} + S{B^2}} = \sqrt {{{\left( {2{\rm{a}}} \right)}^2} + {{\left( {2{\rm{a}}} \right)}^2}} = 2\sqrt 2 a\)
Vì tam giác SAB vuông tại S nên
\[SH = \sqrt {S{A^2} - A{H^2}} = \sqrt {S{A^2} - {{\left( {\frac{{AB}}{2}} \right)}^2}} = \sqrt {{{\left( {2{\rm{a}}} \right)}^2} - {{\left( {\sqrt 2 a} \right)}^2}} = \sqrt 2 a\]
Vì tam giác SHI vuông tại H nên
\(SI = \sqrt {H{I^2} + S{H^2}} = \sqrt {{{\left( {\frac{{SC}}{2}} \right)}^2} + S{H^2}} = \sqrt {{{\left( {2{\rm{a}}} \right)}^2} + {{\left( {\sqrt 2 a} \right)}^2}} = \sqrt 6 a\)
Suy ra bán kính \[R = \sqrt 6 a\]
Thể tích khối cầu ngoại tiếp tứ diện SABC là:
\(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {\left( {a\sqrt 6 } \right)^3} = 8\pi {a^3}\sqrt 6 \)
Vậy ta chọn đáp án D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có 6 chiếc ghế được kê thành một hàng ngang. Xếp ngẫu nhiên 6 học sinh, gồm 3 học sinh lớp A, 2 học sinh lớp B và 1 học sinh lớp C, ngồi vào hàng ghế đó, sao cho mỗi ghế có đúng một học sinh. Xác suất để học sinh lớp C chỉ ngồi cạnh học sinh lớp B bằng
Câu 2:
Phương trình \({\left( {\sqrt 5 } \right)^{{x^2} + 4{\rm{x}} + 6}} = {\log _2}128\) có bao nhiêu nghiệm?
Câu 3:
Người ta sử dụng 7 cuốn sách Toán, 8 cuốn sách Vật lí, 9 cuốn sách Hóa học (các cuốn sách cùng loại giống nhau) để làm phần thưởng cho 12 học sinh, mỗi học sinh được 2 cuốn sách khác loại. Trong số 12 học sinh trên có hai bạn Tâm và Huy. Tính xác suất để hai bạn Tâm và Huy có phần thưởng giống nhau.
Câu 4:
Có bao nhiêu giá trị nguyên dương của m để hàm số y = ln(x3 – 3m2x + 72m) xác định trên (0; +∞).
Câu 5:
Cho hình chóp tứ giác đều có góc giữa mặt bên và mặt đáy bằng 60°. Biết rằng mặt cầu ngoại tiếp hình chóp đó có bán kính \(R = a\sqrt 3 \). Tính độ dài cạnh đáy của hình chóp tứ giác đều nói trên.
Câu 6:
Tìm tất cả các giá trị thực của tham số m để phương trình 3x = m có nghiệm thực:
Câu 7:
Biết đường thẳng d tiếp xúc với (P): y = 2x2 – 5x + 3. Phương trình của d là đáp án nào sau đây?
về câu hỏi!