Tìm tất cả các giá trị của tham số thực m để hàm số y = x3 – 3mx2 – 9m2x nghịch biến trên (0; 1).
Tìm tất cả các giá trị của tham số thực m để hàm số y = x3 – 3mx2 – 9m2x nghịch biến trên (0; 1).
A. \(m > \frac{1}{3}\)
B. m < –1
C. \(m > \frac{1}{3}\) hoặc m < –1
D. \( - 1 < m < \frac{1}{3}\).
Quảng cáo
Trả lời:

Đáp án đúng là: C
Ta có: y = x3 – 3mx2 – 9m2x
y’ = 3x2 – 6mx – 9m2
y’ = 3(x2 – 2mx – 3m2)
y’ = 3(x + m)(x – 3m)
TH1: m > 0 suy ra y’ < 0 ⇔ –m < x < 3m
Nên hàm số nghịch biến trên (0; 1)
\( \Rightarrow \left\{ \begin{array}{l}3m > 1\\ - m < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > \frac{1}{3}\\m > 0\end{array} \right. \Leftrightarrow m > \frac{1}{3}\)
TH2: m < 0 suy ra y’ < 0 ⇔ 3m < x < –m
Nên hàm số nghịch biến trên (0; 1)
\( \Rightarrow \left\{ \begin{array}{l}3m < 0\\ - m > 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 0\\m < - 1\end{array} \right. \Leftrightarrow m < - 1\)
TH3: m = 0 suy ra y’ = 3x2 ≥ 0; ∀ x ∈ (0; 1) nên hàm số đồng biến trên R
Vậy ta chọn đáp án C.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(\frac{1}{6}\)
B. \(\frac{3}{{20}}\)
C. \(\frac{2}{{15}}\)
D. \(\frac{1}{5}\).
Lời giải
Đáp án đúng là: D
Đánh số thứ tự các ghế như sau: 1; 2; 3; 4; 5; 6
Số cách xếp ngẫu nhiên 6 học sinh vào 6 chiếc ghế là 6! = 720 cách
Suy ra n(Ω) = 720
Gọi A là biến cố: “Học sinh lớp C chỉ ngồi cạnh học sinh lớp B”
TH1: Học sinh lớp C ngồi giữa 2 học sinh lớp B, ta coi B-C-B là 1 buộc, có 2 cách xếp 2 học sinh lớp B trong buộc này
Số cách xếp buộc B-C-B vào 6 chiếc ghế là 4 cách (Xếp vào các vị trí 1-2-3, 2-3-4, 3-4-5, 4-5-6)
Số cách xếp 3 học sinh còn lại là 3! = 6 cách
Suy ra có 2 . 4 . 6 = 48 cách
TH2: Học sinh lớp C ngồi ghế 1 hoặc 6
Suy ra có 2 cách
Ứng với mỗi cách xếp học sinh C có 2 cách chọn 1 học sinh B ngồi ở vị trí 2 hoặc 5.
Xếp 4 học sinh còn lại có 4! = 24 cách
Suy ra có 2 . 2 . 24 = 96 cách
Do đó n(A) = 48 + 96 = 144
Xác suất cần tìm là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{144}}{{720}} = \frac{1}{5}\)
Vậy ta chọn đáp án D.
Câu 2
A. 1
B. 3
C. 2
D. 0.
Lời giải
Đáp án đúng là: C
Ta có: \({\left( {\sqrt 5 } \right)^{{x^2} + 4{\rm{x}} + 6}} = {\log _2}128\)
\( \Leftrightarrow {\left( {\sqrt 5 } \right)^{{x^2} + 4{\rm{x}} + 6}} = 7\)
\( \Leftrightarrow {x^2} + 4{\rm{x}} + 6 = {\log _{\sqrt 5 }}7\)
\( \Leftrightarrow {x^2} + 4{\rm{x}} + 6 - {\log _{\sqrt 5 }}7 = 0\)
Ta có \[\Delta = {4^2} - 4.\left( {6 - {{\log }_{\sqrt 5 }}7} \right) > 0\]
Suy ra phương trình đã cho có hai nghiệm phân biệt
Vậy ta chọn đáp án C.
Câu 3
A. \(\frac{1}{{11}}\)
B. \(\frac{1}{{22}}\)
C. \(\frac{5}{{18}}\)
D. \(\frac{{19}}{{66}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. 2
B. 4
C. 5
D. 6.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[{\rm{R}}\backslash \left\{ { \pm \frac{5}{3}} \right\}\]
B. \(\left( {\frac{5}{3}; + \infty } \right)\)
C. \(\left( { - \frac{1}{2}; + \infty } \right)\backslash \left\{ {\frac{5}{3}} \right\}\)
D. \(\left( { - \frac{1}{2}; + \infty } \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. m ≥ 1
B. m ≥ 0
C. m ≠ 0
D. m > 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(\frac{{12}}{5}a\)
B. 2a
C. \(\frac{3}{2}a\)
D. \(\frac{9}{4}a\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.