Câu hỏi:

19/09/2023 2,573

Trong năm đầu tiên đi làm, anh A được nhận lương là 10 triệu đồng mỗi tháng. Cứ hết một năm, anh A lại được tăng lương, mỗi tháng năm sau tăng 12% so với mỗi tháng năm trước. Mỗi khi lĩnh lương, anh A đều phải cất đi phần lương tăng so với năm ngay trước để tiết kiệm mua ô tô. Hỏi sau ít nhất bao nhiêu năm thì anh A mua được ô tô giá 500 triệu, biết rằng anh A được gia đình hỗ trợ 32% giá trị chiếc xe?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Lương năm đầu tiên anh A nhận được là: 

\({T_1} = 10.12 = 120\) (triệu đồng)

Phần lương tăng của anh \(A\) sau năm thứ 2 là:

\({T_2} = 120(1 + 12\% ) - 120 = 120.12\% \) triệu đồng

Phần lương của anh \(A\) sau năm thứ 3 là:

\({T_3} = 120{(1 + 12\% )^2} - 120{(1 + 12\% )^1}\)

\( = 120(1 + 12\% ).12\% \) (triệu đồng)

Phần lương của anh A sau năm thứ n là:       

\({T_n} = 120{(1 + 12\% )^{n - 2}} \cdot 12\% \) triệu đồng

Số tiền anh \(A\) có được sau n năm là:

\(T = {T_2} + {T_3} + \ldots + {T_n}\)

\( = 120.12\% \cdot \left[ {\begin{array}{*{20}{l}}{1 + \left( {1 + 12\% } \right) + {{\left( {1 + 12\% } \right)}^2} + \ldots + {{\left( {1 + 12\% } \right)}^{n - 2}}}\end{array}} \right]\)\( = 120.12\% \cdot \frac{{{{\left( {1 + 12\% } \right)}^{n - 1}} - 1}}{{\left( {1 + 12\% } \right) - 1}}\)

\( = 120\left[ {{{\left( {1 + 12\% } \right)}^{n - 1}} - 1} \right]\)

Đề đủ tiền mua xe thì

\(120\left[ {{{\left( {1 + 12\% } \right)}^{n - 1}} - 1} \right] \ge 68\% .500\)

\( \Leftrightarrow {\left( {1 + 12\% } \right)^{n - 1}} \ge \frac{{23}}{6}\)

\( \Leftrightarrow n - 1 \ge {\log _{1 + 12\% }}\frac{{23}}{6}\)

\( \Leftrightarrow n \ge 12,8.\)

Do đó n = 13.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một gia đình cần ít nhất 900 đơn vị protein và 400 đơn vị lipid trong thức ăn mỗi ngày. Mỗi kilôgam thịt bò chứa 800 đơn vị protein và 200 đơn vị lipid. Mỗi kilôgam thịt lợn chứa 600 đơn vị protein và 400 đơn vị lipid. Biết rằng gia đình này chỉ mua nhiều nhất là 1,6kg thịt bò và 1,1kg thịt lợn; giá tiền 1kg thịt bò là 250 nghìn đồng; 1kg thịt lợn là 160 nghìn đồng. Giả sử gia đình đó mua x kilôgam thịt bò và y kilôgam thịt lợn.

a) Viết các bất phương trình biểu thị các điều kiện của bài toán thành một hệ bất phương trình rồi xác định miền nghiệm của hệ đó.

b) Gọi F (nghìn đồng) là số tiền phải trả cho x kilôgam thịt bò và y kilôgam thịt lợn. Hãy biểu diễn F theo x và y.

c) Tìm số kilôgam thịt mỗi loại mà gia đình cần mua để chi phí là ít nhất.

Xem đáp án » 13/07/2024 97,439

Câu 2:

Cho hai tập khác rỗng A = (m ‒ 1; 4) ]; B = (‒2; 2m + 2) ,m ℝ. Tìm m để A ∩ B ≠ .

Xem đáp án » 18/09/2023 63,136

Câu 3:

Cho tam giác ABC có trọng tâm G và hai trung tuyến AM, BN. Biết AM=15, BN = 12 và tam giác CMN có diện tích là \[15\sqrt 3 \]. Tính độ dài đoạn thẳng MN

Xem đáp án » 13/07/2024 9,759

Câu 4:

Cho hai tập hợp X = {1; 2; 3; 4}; Y = {1;2}. Tập hợp CXY là tập hợp nào sau đây?

Xem đáp án » 18/09/2023 8,673

Câu 5:

Giá trị của tan 45° + cot 135° bằng bao nhiêu?

Xem đáp án » 18/09/2023 8,671

Câu 6:

Có hai cơ sở khoan giếng A và B. Cơ sở A giá mét khoan đầu tiên là 8000 (đồng) và kể từ mét khoan thứ hai, giá của mỗi mét sau tăng thêm 500 (đồng) so với giá của mét khoan ngay trước đó. Cơ sở B: Giá của mét khoan đầu tiên là 6000 (đồng) và kể từ mét khoan thứ hai, giá của mỗi mét khoan sau tăng thêm 7% giá của mét khoan ngay trước đó. Một công ty giống cây trồng muốn thuê khoan hai giếng với độ sâu lần lượt là 20 m và 25 m để phục vụ sản xuất. Giả thiết chất lượng và thời gian khoan giếng của hai cơ sở là như nhau. Công ty ấy nên chọn cơ sở nào để tiết kiệm chi phí nhất?

Xem đáp án » 19/09/2023 8,005

Câu 7:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Mặt bên SAB là tam giác đều cạnh \[\sqrt 3 a\],ABC là tam giác vuông tại A có cạnh AC = a, góc giữa AD và (SAB) bằng 30°. Thể tích khối chóp S.ABCD  bằng: 

Xem đáp án » 18/09/2023 5,678

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store