Câu hỏi:
13/07/2024 7,142
Cho tứ diện ABCD. Gọi G và H lần lượt là trọng tâm của hai tam giác ABC và ACD. Chứng minh rằng GH // (BCD).
Cho tứ diện ABCD. Gọi G và H lần lượt là trọng tâm của hai tam giác ABC và ACD. Chứng minh rằng GH // (BCD).
Quảng cáo
Trả lời:

Gọi E, F lần lượt là trung điểm của các cạnh BC, CD.
Vì G là trọng tâm của tam giác ABC, nên A, G, E thẳng hàng và .
Tương tự có A, H, F thẳng hàng và .
Do đó .
Theo định lí Thalès đảo, suy ra tam giác AEF có GH // EF.
Mà E ∈ BC ⊂ (BCD) và F ∈ CD ⊂ (BCD) nên EF ⊂ (BCD).
Vậy GH // (BCD).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Mặt phẳng (SAC) chứa đường thẳng SC song song với mặt phẳng (P) nên giao tuyến của hai mặt phẳng (SAC) và (P) song song với SC.
Do đó, trong mặt phẳng (SAC), vẽ đường thẳng EF // SC (F ∈ AC) thì EF là giao tuyến của hai mặt phẳng (P) và (SAC).
Điểm F là điểm chung của mặt phẳng (P) và mặt phẳng (ABCD).
Lời giải

a) Vì M, N lần lượt là giao điểm của (P) và các cạnh AB, AD và E thuộc SA, đồng thời E thuộc mặt phẳng (P) nên EM, EN là các giao tuyến của các mặt phẳng (SAB), (SAD) với mặt phẳng (P).
Mặt phẳng (SAB) chứa đường thẳng SB song song với (P) nên giao tuyến của hai mặt phẳng đó song song với SB, suy ra EM // SB. Tương tự có EN // SD.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.