Câu hỏi:

26/09/2023 5,869

Cho đường tròn (O) bán kính OA. Từ trung điểm M của OA vẽ dây BC vuông góc với OA. Biết độ dài đường tròn (O) là 4π (cm). Độ dài cung lớn BC là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Cho đường tròn (O) bán kính OA. Từ trung điểm M của OA vẽ dây BC vuông (ảnh 1)

Vì độ dài đường tròn là 4π nên 4π = 2π . R

Suy ra R = 2 (cm)

Xét tứ giác ABOC có hai đường chéo AO và BC vuông góc với nhau tại trung điểm M nên ABOC là hình thoi

Suy ra OB = OC = AB

Do đó tam giác ABO đều nên \(\widehat {AOB} = 60^\circ \)

Suy ra \(\widehat {BOC} = 2\widehat {AOB} = 2.60^\circ = 120^\circ \)

Do đó số đo cung lớn BC là 360° – 120° = 240°

Độ dài cung lớn BC là \(l = \frac{{\pi .2.240^\circ }}{{180^\circ }} = \frac{{8\pi }}{3}\) (cm)

Vậy ta chọn đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Gọi x là số đơn vị vitamin A mỗi người tiếp nhận trong một ngày (x ≥ 0).

Gọi y là số đơn vị vitamin A mỗi người tiếp nhận trong một ngày (y ≥ 0).

Một người có thể tiếp nhận được mỗi ngày không quá 600 đơn vị vitamin A và không quá 500 đơn vị vitamin B nên x ≤ 600 và y ≤ 500.

Một người mỗi ngày cần từ 400 đến 1 000 đơn vị vitamin cả A và B nên:

400 ≤ x + y ≤ 1000

Do tác động phối hợp của hai loại vitamin, mỗi ngày, số đơn vị vitamin B không ít hơn \(\frac{1}{2}\) số đơn vị vitamin A nhưng không nhiều hơn ba lần số đơn vị vitamin A nên:

\(\left\{ \begin{array}{l}y \ge \frac{1}{2}x\\y \le 3{\rm{x}}\end{array} \right.\)

Ta có hệ bất phương trình giữa x và y: \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x \le 600\\y \le 500\\x + y \ge 400\\x + y \le 1000\\y \ge \frac{1}{2}x\\y \le 3{\rm{x}}\end{array} \right.\)

Biểu diễn miền nghiệm của hệ bất phương trình:

− Biểu diễn miền nghiệm D1 của bất phương trình x ≤ 600

+ Vẽ đường thẳng d1: x = 600 trên mặt phẳng tọa độ Oxy

+ Thay x = 0, y = 0 vào bất phương trình ta được 0 ≤ 600 là mệnh đề đúng nên tọa độ điểm O(0; 0) thỏa mãn bất phương trình x ≤ 600

Vậy miền nghiệm D1 của bất phương trình x ≤ 600 là nửa mặt phẳng bờ d1 (kể cả bờ d1) chứa điểm O.

Tương tự ta biểu diễn các miền nghiệm:

− Miền nghiệm D2 của bất phương trình y ≤ 500: là nửa mặt phẳng bờ d2 (kể cả bờ d2: y = 500) chứa điểm O.

− Miền nghiệm D3 của bất phương trình x + y ≥ 400: là nửa mặt phẳng bờ d3 (kể cả bờ d3: x + y = 400) không chứa điểm O.

− Miền nghiệm D4 của bất phương trình x + y ≤ 1000: là nửa mặt phẳng bờ d4 (kể cả bờ d4: x + y = 1000) chứa điểm O.

− Miền nghiệm D5 của bất phương trình \(y \ge \frac{1}{2}x\): là nửa mặt phẳng bờ d5 (kể cả bờ d5\(y = \frac{1}{2}x\) ) chứa điểm M(0; 50).

− Miền nghiệm D6 của bất phương trình y ≤ 3x: là nửa mặt phẳng bờ d6 (kể cả bờ d6: y = 3x) không chứa điểm M (0; 50).

Ta có đồ thị sau:

Một nhà khoa học nghiên cứu về tác động phối hợp của vitamin A và vitamin B đối (ảnh 1)

Miền nghiệm của hệ bất phương trình là miền của đa giác ABCDEF với: \(A\left( {100;300} \right),B\left( {\frac{{500}}{3};500} \right),C\left( {500;500} \right),D\left( {600;400} \right),E\left( {600;300} \right);F\left( {\frac{{800}}{3};\frac{{400}}{3}} \right)\)

Số tiền trả cho x đơn vị vitamin A và y đơn vị vitamin B là: F(x; y) = 9x + 7,5y

Để có số tiền phải trả là ít nhất thì F(x; y) phải nhỏ nhất

Tại A(100; 300): F = 9.100 + 7,5. 300 = 3150;

Tại \(B\left( {\frac{{500}}{3};500} \right):F = 9.\frac{{500}}{3} + 7,5.500 = 5250\)

Tại C(500; 500): F = 9. 500 + 7,5. 500 = 8250;

Tại D(600, 400): F = 9. 600 + 7,5. 400 = 8400;

Tại E(600, 300): F = 9. 600 + 7,5. 300 = 7650;

Tại \(F\left( {\frac{{800}}{3};\frac{{400}}{3}} \right):F = 9.\frac{{800}}{3} + 7,5.\frac{{400}}{3} = 3400\).

Suy ra F(x; y) nhỏ nhất là 3150 khi x = 100 và y = 300

Do đó mỗi người sẽ dùng 100 đơn vị vitamin A và 300 đơn vị vitamin B để đảm bảo các điều kiện số lượng sử dụng và chi phí phải trả là ít nhất

Vậy ta chọn đáp án D.

Lời giải

Cho đường tròn tâm O bán kính 3 cm. Từ một điểm A cách O là 5 cm vẽ hai tiếp  (ảnh 1)

a) Xét (O) có AB, AC là hai tiếp tuyến cắt nhau tại A nên AB = AC và AO là tia phân giác của \(\widehat {BAC}\)

Do đó ∆ABC cân tại A có AO là phân giác đồng thời là đường cao, hay AO BC.

b) Vì ∆BCD nội tiếp đường tròn (O) nên ∆BCD vuông tại C

Do đó CD BC

Mà AO BC nên CD // AO.

c) Vì ∆AOB vuông tại B nên theo định lý Pythagore có:

\[AB = \sqrt {A{O^2} - B{O^2}} = \sqrt {{5^2} - {3^2}} = 4\]

Gọi H là giao điểm của AO và BC.

Áp dụng hệ thức lượng trong tam giác vuông ABO có:

AB2 = AH . AO \( \Rightarrow AH = \frac{{A{B^2}}}{{AO}} = \frac{{16}}{5} = 3,2\)

\(\frac{1}{{B{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{B{O^2}}} \Leftrightarrow \frac{1}{{B{H^2}}} = \frac{1}{{{4^2}}} + \frac{1}{{{3^2}}}\). Suy ra BH = 2,4

Do đó BC = 2AH = 2 . 2,4 = 4,8

Chu vi tam giác ABC là: AB + AC + BC = 4 + 4 + 4,8 = 12,8 (cm).

Diện tích tam giác ABC là \({S_{ABC}} = \frac{1}{2}AH.BC = \frac{1}{2}.3,2.4,8 = 7,68\) (cm2).

d) Vì AO // CD nên \(\widehat {BOA} = \widehat {O{\rm{D}}E}\) (hai góc đồng vị)

Xét ∆ABO và ∆EOD có

\(\widehat {ABO} = \widehat {EO{\rm{D}}}\left( { = 90^\circ } \right)\);

BO = DO;

\(\widehat {BOA} = \widehat {O{\rm{D}}E}\) (chứng minh trên)

Suy ra ∆ABO = ∆EOD (g.c.g)

Do đó AB = EO (hai cạnh tương ứng)

Mà AB // EO (vì cùng vuông góc với BD)

Nên ABOE là hình bình hành

Lại có \(\widehat {AOB} = 90^\circ \) nên hình bình hành ABOE là hình chữ nhật.

Suy ra \(\widehat {A{\rm{E}}O} = 90^\circ \) hay OE AI

Xét tam giác AIO có hai đường cao OE và AC cắt nhau tại G

Suy ra G là trực tâm, nên OA GI

Xét (O) có AB, AC là hai tiếp tuyến cắt nhau tại A nên OA là tia phân giác của \(\widehat {BOC}\)

Do đó \(\widehat {I{\rm{O}}A} = \widehat {BOA}\)

\(\widehat {O{\rm{D}}E} = \widehat {BOA}\) suy ra \(\widehat {I{\rm{O}}A} = \widehat {ODE}\)           (1)

Ta có EO AI, EO OD suy ra AE // OD

Mà AO // ED nên AODE là hình bình hành

Suy ra \(\widehat {O{\rm{D}}E} = \widehat {OA{\rm{E}}}\)           (2)

Từ (1) và (2) suy ra \(\widehat {I{\rm{O}}A} = \widehat {OAE}\)

Do đó tam giác AOI cân tại I

Lại có IG là đường cao

Suy ra IG là đường trung trực của AO

Vậy IG là đường trung trực của AO.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP