Câu hỏi:

26/09/2023 517

Tìm tất cả các giá trị của tham số m sao cho phương trình x3 – 3x2 + (2m – 2)x + m – 3 = 0 có ba nghiệm x1, x2, x3 thỏa mãn x1 < –1 < x2 < x3.

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Đặt f(x) = x3 – 3x2 + (2m – 2)x + m – 3 = 0. Ta thấy hàm số liên tục trên ℝ

Dễ thấy nếu \(x \to - \infty \) thì \(f(x) \to - \infty \) hay \(f(x) < 0\)

Suy ra điều kiện cần để f(x) = 0 có 3 nghiệm thỏa mãn

\({x_1} < - 1 < {x_2} < {x_3}{\rm{ l\`a }}f( - 1) > 0 \Leftrightarrow - m - 5 > 0 \Leftrightarrow m < - 5\)

Điều kiện đủ: với m < –5 ta có

\(\mathop {\lim }\limits_{x \to - \infty } f(x) = - \infty \) nên tồn tại a < –1 sao cho f(a) < 0

Mặt khác \(f( - 1) = - m - 5 > 0\). Suy ra \(f(a).f( - 1) < 0\)

Do đó tồn tại \({x_1} \in (a; - 1)\) sao cho \(f\left( {{x_1}} \right) = 0\)

\(f(0) = m - 3 < 0,f( - 1) > 0\). Suy ra \(f(0).f( - 1) < 0\)

Do đó tồn tại \({x_2} \in ( - 1;0)\) sao cho \(f\left( {{x_2}} \right) = 0\)

Ta có: \(\mathop {\lim }\limits_{x \to + \infty } f(x) = + \infty \) nên tồn tại b > 0 sao cho f(b) > 0

Mặt khác f(0) < 0. Suy ra f(0) . f(b) < 0

Do đó tồn tại \({x_3} \in (0;b)\) sao cho \(f\left( {{x_3}} \right) = 0\)

Suy ra m < –5 thỏa mãn yêu cầu bài toán

Vậy đáp án cần chọn là: B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có hai dãy ghế mỗi dãy xếp 5 nam, 5 nữ vào 2 dãy ghế trên. Có bao nhiêu cách nếu:

a) Nam và nữ được xếp tùy ý.

b) Nam 1 dãy ghế nữ 1 dãy ghế.

Xem đáp án » 11/07/2024 14,597

Câu 2:

Trên một kệ sách có 6 quyển sách toán khác nhau, 7 quyển sách lý khác nhau và 8 quyển sách hóa khác nhau. Có bao nhiêu cách chọn 4 quyển sách khác nhau đủ cả ba loại sách toán, lý và hóa tặng cho 4 học sinh của lớp 11A1?

Xem đáp án » 11/07/2024 2,221

Câu 3:

Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC vuông tại A, \[{\rm{A}}B = a\sqrt 3 \], AC = AA’ = a. Sin góc giữa đường thẳng AC’ và mặt phẳng (BCC’B’) bằng:

Xem đáp án » 26/09/2023 2,171

Câu 4:

Với giá trị nào của m để phương trình 9x – 3x + m = 0 có nghiệm?

Xem đáp án » 26/09/2023 2,014

Câu 5:

Cho tứ diện ABCD. Gọi G là trọng tâm của tam giác BCD. Giao tuyến của mặt phẳng (ACD) và (GAB) là:

Xem đáp án » 26/09/2023 2,010

Câu 6:

Cho hàm số y = f(x) liên tục trên ℝ và có đồ thị như hình vẽ bên:

Số nghiệm thực của phương trình 2f (x^2 - 1) - 5 = 0. A. 1 B. 3 C. 4 D. 2 (ảnh 1)

Số nghiệm thực của phương trình 2f (x2 – 1) – 5 = 0.

Xem đáp án » 26/09/2023 1,720

Câu 7:

Tâm đối xứng của đồ thị hàm số \(y = \frac{{ax + b}}{{c{\rm{x}} + d}}\) là:

Xem đáp án » 26/09/2023 1,710

Bình luận


Bình luận