Tìm tất cả các giá trị của tham số m sao cho phương trình x3 – 3x2 + (2m – 2)x + m – 3 = 0 có ba nghiệm x1, x2, x3 thỏa mãn x1 < –1 < x2 < x3.
Tìm tất cả các giá trị của tham số m sao cho phương trình x3 – 3x2 + (2m – 2)x + m – 3 = 0 có ba nghiệm x1, x2, x3 thỏa mãn x1 < –1 < x2 < x3.
Câu hỏi trong đề: 7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: B
Đặt f(x) = x3 – 3x2 + (2m – 2)x + m – 3 = 0. Ta thấy hàm số liên tục trên ℝ
Dễ thấy nếu \(x \to - \infty \) thì \(f(x) \to - \infty \) hay \(f(x) < 0\)
Suy ra điều kiện cần để f(x) = 0 có 3 nghiệm thỏa mãn
\({x_1} < - 1 < {x_2} < {x_3}{\rm{ l\`a }}f( - 1) > 0 \Leftrightarrow - m - 5 > 0 \Leftrightarrow m < - 5\)
Điều kiện đủ: với m < –5 ta có
\(\mathop {\lim }\limits_{x \to - \infty } f(x) = - \infty \) nên tồn tại a < –1 sao cho f(a) < 0
Mặt khác \(f( - 1) = - m - 5 > 0\). Suy ra \(f(a).f( - 1) < 0\)
Do đó tồn tại \({x_1} \in (a; - 1)\) sao cho \(f\left( {{x_1}} \right) = 0\)
\(f(0) = m - 3 < 0,f( - 1) > 0\). Suy ra \(f(0).f( - 1) < 0\)
Do đó tồn tại \({x_2} \in ( - 1;0)\) sao cho \(f\left( {{x_2}} \right) = 0\)
Ta có: \(\mathop {\lim }\limits_{x \to + \infty } f(x) = + \infty \) nên tồn tại b > 0 sao cho f(b) > 0
Mặt khác f(0) < 0. Suy ra f(0) . f(b) < 0
Do đó tồn tại \({x_3} \in (0;b)\) sao cho \(f\left( {{x_3}} \right) = 0\)
Suy ra m < –5 thỏa mãn yêu cầu bài toán
Vậy đáp án cần chọn là: B.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Vì nam nữ được sắp xếp tùy ý nên sử dụng hoán vị cho 5 nam + 5 nữ = 10 người
Suy ra có 10! = 3 628 800 cách xếp.
b) Chọn 1 dãy xếp nam ngồi có 2 cách.
Xếp 5 bạn nam vào các vị trí trong dãy đã chọn có 5! cách
Xếp nữ vào dãy còn lại có 1 cách
Xếp nữ vào các vị trí trong dãy đó có 5! cách
Suy ra có: 2 . 5! . 1 .5! = 28 800 cách.
Lời giải
Đáp án đúng là: D

Gọi H là hình chiếu của A trên BC
Ta có AH ⊥ BC, AH ⊥ BB’ nên AH ⊥ (BCC’B’)
Suy ra HC’ là hình chiếu của AC’ trên mặt phẳng (BCC’B’)
Do đó góc giữa AC’ và mặt phẳng (BCC’B’) là góc \(\widehat {AC'H}\)
Vì tam giác ABC vuông tại A nên \[{{\rm{S}}_{ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}AH.BC\]
Vì tam giác ABC vuông tại A nên theo định lý Pytago có
\(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {3{{\rm{a}}^2} + {a^2}} = 2{\rm{a}}\)
Suy ra \(AH = \frac{{AC.AB}}{{BC}} = \frac{{a\sqrt 3 .a}}{{2{\rm{a}}}} = \frac{{a\sqrt 3 }}{2}\)
Vì tam giác AA’C’ vuông tại A’ nên theo định lý Pytago có
\(AC' = \sqrt {AA{'^2} + A'C{'^2}} = \sqrt {{{\rm{a}}^2} + {a^2}} = \sqrt 2 {\rm{a}}\)
Xét tam giác AC’H có
\[\sin \widehat {AC'H} = \frac{{AH}}{{AC'}} = \frac{{\frac{{a\sqrt 3 }}{2}}}{{a\sqrt 2 }} = \frac{{\sqrt 6 }}{4}\]
Vậy ta chọn đáp án D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.