Câu hỏi:

26/09/2023 122

Rút gọn tổng sau: \(S = C_n^1 + 2C_n^2 + 3C_n^3 + ... + nC_n^n\) ta được:

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Ta có \(kC_n^k = k.\frac{{n!}}{{k!\left( {n - k} \right)!}} = \frac{{n\left( {n - 1} \right)!}}{{\left( {k - 1} \right)!\left[ {n - 1 - \left( {k - 1} \right)} \right]!}} = nC_{n - 1}^{k - 1}\)

Khi đó: \(S = C_n^1 + 2C_n^2 + 3C_n^3 + ... + nC_n^n\)

\(S = nC_{n - 1}^0 + nC_{n - 1}^1 + ... + nC_{n - 1}^{n - 1}\)

\(S = n\left( {C_{n - 1}^0 + C_{n - 1}^1 + ... + C_{n - 1}^{n - 1}} \right)\)

Ta có: \({\left( {a + b} \right)^{n - 1}} = C_{n - 1}^0.{a^{n - 1}} + C_{n - 1}^1.{a^{n - 2}}b + C_{n - 1}^2{a^{n - 3}}{b^2} + ... + C_{n - 1}^{n - 1}.{b^{n - 1}}\)

Thay a = 1,b = 1 vào biểu thức ta được

\({2^{n - 1}} = C_{n - 1}^0 + C_{n - 1}^1 + ... + C_{n - 1}^{n - 1}\)

Suy ra \(S = n\left( {C_{n - 1}^0 + C_{n - 1}^1 + ... + C_{n - 1}^{n - 1}} \right) = n{.2^{n - 1}}\)

Vậy ta chọn đáp án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có hai dãy ghế mỗi dãy xếp 5 nam, 5 nữ vào 2 dãy ghế trên. Có bao nhiêu cách nếu:

a) Nam và nữ được xếp tùy ý.

b) Nam 1 dãy ghế nữ 1 dãy ghế.

Xem đáp án » 11/07/2024 12,611

Câu 2:

Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC vuông tại A, \[{\rm{A}}B = a\sqrt 3 \], AC = AA’ = a. Sin góc giữa đường thẳng AC’ và mặt phẳng (BCC’B’) bằng:

Xem đáp án » 26/09/2023 1,971

Câu 3:

Cho tứ diện ABCD. Gọi G là trọng tâm của tam giác BCD. Giao tuyến của mặt phẳng (ACD) và (GAB) là:

Xem đáp án » 26/09/2023 1,920

Câu 4:

Trên một kệ sách có 6 quyển sách toán khác nhau, 7 quyển sách lý khác nhau và 8 quyển sách hóa khác nhau. Có bao nhiêu cách chọn 4 quyển sách khác nhau đủ cả ba loại sách toán, lý và hóa tặng cho 4 học sinh của lớp 11A1?

Xem đáp án » 11/07/2024 1,886

Câu 5:

Với giá trị nào của m để phương trình 9x – 3x + m = 0 có nghiệm?

Xem đáp án » 26/09/2023 1,869

Câu 6:

Cho hàm số y = f(x) liên tục trên ℝ và có đồ thị như hình vẽ bên:

Số nghiệm thực của phương trình 2f (x^2 - 1) - 5 = 0. A. 1 B. 3 C. 4 D. 2 (ảnh 1)

Số nghiệm thực của phương trình 2f (x2 – 1) – 5 = 0.

Xem đáp án » 26/09/2023 1,677

Câu 7:

Tâm đối xứng của đồ thị hàm số \(y = \frac{{ax + b}}{{c{\rm{x}} + d}}\) là:

Xem đáp án » 26/09/2023 1,657

Bình luận


Bình luận