Cho hình trụ có các đáy là 2 hình tròn tâm O và O', bán kính đáy bằng chiều cao vào bằng a. Trên đường tròn đáy tâm O lấy điểm A, trên đường tròn tâm O lấy điểm B sao cho AB = 2a. Thể tích khối tứ diện OO'AB theo a là:
Cho hình trụ có các đáy là 2 hình tròn tâm O và O', bán kính đáy bằng chiều cao vào bằng a. Trên đường tròn đáy tâm O lấy điểm A, trên đường tròn tâm O lấy điểm B sao cho AB = 2a. Thể tích khối tứ diện OO'AB theo a là:
Quảng cáo
Trả lời:
Đáp án đúng là: D

Kẻ đường sinh AA’. Gọi D là điểm đối xứng A’ qua O’ và H là hình chiếu của B trên đường thẳng A’D
Ta có \(\left\{ \begin{array}{l}BH \bot A'D\\BH \bot {\rm{AA'}}\end{array} \right. \Rightarrow BH \bot \left( {AO{\rm{O}}'A'} \right)\)
Vì tam giác ABA’ vuông tại A’ nên theo định lý Pytago có:
\(A'B = \sqrt {A{B^2} - A'{A^2}} = \sqrt {{{\left( {2{\rm{a}}} \right)}^2} - {a^2}} = a\sqrt 3 \)
Vì tam giác DBA’ vuông tại B nên theo định lý Pytago có:
\(BD = \sqrt {A'{D^2} - A'{B^2}} = \sqrt {{{\left( {2{\rm{a}}} \right)}^2} - {{\left( {a\sqrt 3 } \right)}^2}} = a\)
Mà O’B = O’D = a
Suy ra tam giác O’BD đều có BH là đường cao
Do đó \(BH = \frac{{a\sqrt 3 }}{2}\)
Diện tích tam giác AOO’ là: \[{{\rm{S}}_{AOO'}} = \frac{1}{2}OA.OO' = \frac{1}{2}{a^2}\]
Thể tích khối tứ diện OO'AB theo a là:
\(V = \frac{1}{3}.BH.{S_{AO{\rm{O}}'}} = \frac{1}{3}.\frac{{\sqrt 3 a}}{2}.\frac{{{a^2}}}{2} = \frac{{\sqrt 3 {a^3}}}{{12}}\)
Vậy ta chọn đáp án D.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Vì nam nữ được sắp xếp tùy ý nên sử dụng hoán vị cho 5 nam + 5 nữ = 10 người
Suy ra có 10! = 3 628 800 cách xếp.
b) Chọn 1 dãy xếp nam ngồi có 2 cách.
Xếp 5 bạn nam vào các vị trí trong dãy đã chọn có 5! cách
Xếp nữ vào dãy còn lại có 1 cách
Xếp nữ vào các vị trí trong dãy đó có 5! cách
Suy ra có: 2 . 5! . 1 .5! = 28 800 cách.
Lời giải
Đáp án đúng là: D

Gọi H là hình chiếu của A trên BC
Ta có AH ⊥ BC, AH ⊥ BB’ nên AH ⊥ (BCC’B’)
Suy ra HC’ là hình chiếu của AC’ trên mặt phẳng (BCC’B’)
Do đó góc giữa AC’ và mặt phẳng (BCC’B’) là góc \(\widehat {AC'H}\)
Vì tam giác ABC vuông tại A nên \[{{\rm{S}}_{ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}AH.BC\]
Vì tam giác ABC vuông tại A nên theo định lý Pytago có
\(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {3{{\rm{a}}^2} + {a^2}} = 2{\rm{a}}\)
Suy ra \(AH = \frac{{AC.AB}}{{BC}} = \frac{{a\sqrt 3 .a}}{{2{\rm{a}}}} = \frac{{a\sqrt 3 }}{2}\)
Vì tam giác AA’C’ vuông tại A’ nên theo định lý Pytago có
\(AC' = \sqrt {AA{'^2} + A'C{'^2}} = \sqrt {{{\rm{a}}^2} + {a^2}} = \sqrt 2 {\rm{a}}\)
Xét tam giác AC’H có
\[\sin \widehat {AC'H} = \frac{{AH}}{{AC'}} = \frac{{\frac{{a\sqrt 3 }}{2}}}{{a\sqrt 2 }} = \frac{{\sqrt 6 }}{4}\]
Vậy ta chọn đáp án D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.