Câu hỏi:
26/09/2023 430Cho hình trụ có các đáy là 2 hình tròn tâm O và O', bán kính đáy bằng chiều cao vào bằng a. Trên đường tròn đáy tâm O lấy điểm A, trên đường tròn tâm O lấy điểm B sao cho AB = 2a. Thể tích khối tứ diện OO'AB theo a là:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: D
Kẻ đường sinh AA’. Gọi D là điểm đối xứng A’ qua O’ và H là hình chiếu của B trên đường thẳng A’D
Ta có \(\left\{ \begin{array}{l}BH \bot A'D\\BH \bot {\rm{AA'}}\end{array} \right. \Rightarrow BH \bot \left( {AO{\rm{O}}'A'} \right)\)
Vì tam giác ABA’ vuông tại A’ nên theo định lý Pytago có:
\(A'B = \sqrt {A{B^2} - A'{A^2}} = \sqrt {{{\left( {2{\rm{a}}} \right)}^2} - {a^2}} = a\sqrt 3 \)
Vì tam giác DBA’ vuông tại B nên theo định lý Pytago có:
\(BD = \sqrt {A'{D^2} - A'{B^2}} = \sqrt {{{\left( {2{\rm{a}}} \right)}^2} - {{\left( {a\sqrt 3 } \right)}^2}} = a\)
Mà O’B = O’D = a
Suy ra tam giác O’BD đều có BH là đường cao
Do đó \(BH = \frac{{a\sqrt 3 }}{2}\)
Diện tích tam giác AOO’ là: \[{{\rm{S}}_{AOO'}} = \frac{1}{2}OA.OO' = \frac{1}{2}{a^2}\]
Thể tích khối tứ diện OO'AB theo a là:
\(V = \frac{1}{3}.BH.{S_{AO{\rm{O}}'}} = \frac{1}{3}.\frac{{\sqrt 3 a}}{2}.\frac{{{a^2}}}{2} = \frac{{\sqrt 3 {a^3}}}{{12}}\)
Vậy ta chọn đáp án D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có hai dãy ghế mỗi dãy xếp 5 nam, 5 nữ vào 2 dãy ghế trên. Có bao nhiêu cách nếu:
a) Nam và nữ được xếp tùy ý.
b) Nam 1 dãy ghế nữ 1 dãy ghế.
Câu 2:
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC vuông tại A, \[{\rm{A}}B = a\sqrt 3 \], AC = AA’ = a. Sin góc giữa đường thẳng AC’ và mặt phẳng (BCC’B’) bằng:
Câu 3:
Với giá trị nào của m để phương trình 9x – 3x + m = 0 có nghiệm?
Câu 4:
Trên một kệ sách có 6 quyển sách toán khác nhau, 7 quyển sách lý khác nhau và 8 quyển sách hóa khác nhau. Có bao nhiêu cách chọn 4 quyển sách khác nhau đủ cả ba loại sách toán, lý và hóa tặng cho 4 học sinh của lớp 11A1?
Câu 5:
Cho hàm số y = f(x) liên tục trên ℝ và có đồ thị như hình vẽ bên:
Số nghiệm thực của phương trình 2f (x2 – 1) – 5 = 0.
Câu 7:
Cho hình chóp S.ABCD. Giao tuyến của hai mặt phẳng (SAB) và (SBC) là đường thẳng:
về câu hỏi!