Câu hỏi:

26/09/2023 236

Cho tứ giác ABCD có AB = CD. Gọi E, F lần lượt là trung điểm của AC, DB. Đường thẳng EF lần lượt cắt AB, CD tại H, K. Chứng minh rằng \(\widehat {KHB} = \widehat {HKC}\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tứ giác ABCD có AB = CD. Gọi E, F lần lượt là trung điểm của AC, DB (ảnh 1)

Gọi M là trung điểm của AD, N là trung điểm của BC

Xét tam giác ACD có M, E lần lượt là trung điểm của AD, AC

Suy ra ME là đường trung bình

Do đó ME // CD, \(ME = \frac{1}{2}C{\rm{D}}\) (1)

Xét tam giác BCD có N, F lần lượt là trung điểm của BC, BD

Suy ra NF là đường trung bình

Do đó NF // CD, \(NF = \frac{1}{2}C{\rm{D}}\)  (2)

Xét tam giác ACB có N, E lần lượt là trung điểm của BC, AC

Suy ra NE là đường trung bình

Do đó NE // AB, \(NE = \frac{1}{2}AB\)    (3)

Xét tam giác ABD có M, F lần lượt là trung điểm của AD, BD

Suy ra MF là đường trung bình

Do đó MF // AB, \(MF = \frac{1}{2}AB\)   (4)

Từ (1), (2), (3) và (4) suy ra \(\left\{ \begin{array}{l}ME//NF//C{\rm{D}}\\MF//NE//AB\\ME = NF = \frac{1}{2}C{\rm{D}}\\MF = NE = \frac{1}{2}AB\end{array} \right.\)

Mà AB = CD nên NF = NE

Suy ra tam giác NFE cân tại N

Do đó \(\widehat {NF{\rm{E}}} = \widehat {{\rm{NEF}}}\)

Vì NE // AB nên \(\widehat {KHB} = \widehat {NEK}\) (hai góc đồng vị)

Vì NF // CD nên \(\widehat {HKC} = \widehat {NFH}\) (hai góc đồng vị)

Suy ra \(\widehat {KHB} = \widehat {HKC}\)

Vậy \(\widehat {KHB} = \widehat {HKC}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có hai dãy ghế mỗi dãy xếp 5 nam, 5 nữ vào 2 dãy ghế trên. Có bao nhiêu cách nếu:

a) Nam và nữ được xếp tùy ý.

b) Nam 1 dãy ghế nữ 1 dãy ghế.

Xem đáp án » 11/07/2024 22,254

Câu 2:

Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC vuông tại A, \[{\rm{A}}B = a\sqrt 3 \], AC = AA’ = a. Sin góc giữa đường thẳng AC’ và mặt phẳng (BCC’B’) bằng:

Xem đáp án » 26/09/2023 5,100

Câu 3:

Trên một kệ sách có 6 quyển sách toán khác nhau, 7 quyển sách lý khác nhau và 8 quyển sách hóa khác nhau. Có bao nhiêu cách chọn 4 quyển sách khác nhau đủ cả ba loại sách toán, lý và hóa tặng cho 4 học sinh của lớp 11A1?

Xem đáp án » 11/07/2024 3,345

Câu 4:

Không gian mẫu khi gieo hai đồng xu là:

Xem đáp án » 26/09/2023 2,707

Câu 5:

Với giá trị nào của m để phương trình 9x – 3x + m = 0 có nghiệm?

Xem đáp án » 26/09/2023 2,549

Câu 6:

Cho tứ diện ABCD. Gọi G là trọng tâm của tam giác BCD. Giao tuyến của mặt phẳng (ACD) và (GAB) là:

Xem đáp án » 26/09/2023 2,161

Câu 7:

Tâm đối xứng của đồ thị hàm số \(y = \frac{{ax + b}}{{c{\rm{x}} + d}}\) là:

Xem đáp án » 26/09/2023 2,104
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua