Câu hỏi:

26/09/2023 437

Gọi S là tập hợp tất cả các giá trị thực của tham số m để giá trị nhỏ nhất của hàm số y = f(x) = 4x2 – 4mx + m2 – 2m trên đoạn [–2; 0] bằng 3. Tính tổng T các phần tử của S.

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Parabol có hệ số theo x2 là 4 > 0 nên bề lõm hướng lên. Hoành độ đỉnh \({x_I} = \frac{m}{2}\)

+) Nếu \(\frac{m}{2} < - 2 \Leftrightarrow m < - 4\) thì \({x_I} < - 2 < 0\). Suy ra f(x) đồng biến trên đoạn [–2; 0]

Do đó \({\min _{[ - 2;0]}}f(x) = f( - 2) = {m^2} + 6m + 16\)

Theo yêu cầu bài toán: \({m^2} + 6m + 16 = 3 \Leftrightarrow {m^2} + 6m + 13 = 0\)(vô nghiệm)

+) Nếu \( - 2 \le \frac{m}{2} \le 0 \Leftrightarrow - 4 \le m \le 0\) thì \({x_I} \in [0;2]\)

Suy ra f(x) đạt giá trị nhỏ nhất tại đỉnh. Do đó \({\min _{[ - 2;0]}}f(x) = f\left( {\frac{m}{2}} \right) = - 2m\)

Theo yêu cầu bài toán \( - 2m = 3 \Leftrightarrow m = - \frac{3}{2}\) (thỏa mãn \( - 4 \le m \le 0\) )

+) Nếu \(\frac{m}{2} > 0 \Leftrightarrow m > 0\) thì \({x_I} > 0 > - 2\). Suy ra f(x) nghịch biến trên đoạn [–2; 0]

Do đó \({\min _{[ - 2;0]}}f(x) = f\left( 0 \right) = {m^2} - 2m\)

Theo yêu cầu bài toán \({m^2} - 2m = 3 \Leftrightarrow {m^2} - 2m - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}m = - 1\\m = 3\end{array} \right.\)

Mà m > 0 nên m = 3

Ta có bảng biến thiên:

Gọi S là tập hợp tất cả các giá trị thực của tham số m để giá trị nhỏ nhất của hàm  (ảnh 1)

Suy ra tổng các phần tử của S là \(T = \frac{{ - 3}}{2} + 3 = \frac{3}{2}\)

Vậy đáp án cần chọn là: D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có hai dãy ghế mỗi dãy xếp 5 nam, 5 nữ vào 2 dãy ghế trên. Có bao nhiêu cách nếu:

a) Nam và nữ được xếp tùy ý.

b) Nam 1 dãy ghế nữ 1 dãy ghế.

Xem đáp án » 11/07/2024 14,597

Câu 2:

Trên một kệ sách có 6 quyển sách toán khác nhau, 7 quyển sách lý khác nhau và 8 quyển sách hóa khác nhau. Có bao nhiêu cách chọn 4 quyển sách khác nhau đủ cả ba loại sách toán, lý và hóa tặng cho 4 học sinh của lớp 11A1?

Xem đáp án » 11/07/2024 2,221

Câu 3:

Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC vuông tại A, \[{\rm{A}}B = a\sqrt 3 \], AC = AA’ = a. Sin góc giữa đường thẳng AC’ và mặt phẳng (BCC’B’) bằng:

Xem đáp án » 26/09/2023 2,171

Câu 4:

Với giá trị nào của m để phương trình 9x – 3x + m = 0 có nghiệm?

Xem đáp án » 26/09/2023 2,014

Câu 5:

Cho tứ diện ABCD. Gọi G là trọng tâm của tam giác BCD. Giao tuyến của mặt phẳng (ACD) và (GAB) là:

Xem đáp án » 26/09/2023 2,010

Câu 6:

Cho hàm số y = f(x) liên tục trên ℝ và có đồ thị như hình vẽ bên:

Số nghiệm thực của phương trình 2f (x^2 - 1) - 5 = 0. A. 1 B. 3 C. 4 D. 2 (ảnh 1)

Số nghiệm thực của phương trình 2f (x2 – 1) – 5 = 0.

Xem đáp án » 26/09/2023 1,720

Câu 7:

Tâm đối xứng của đồ thị hàm số \(y = \frac{{ax + b}}{{c{\rm{x}} + d}}\) là:

Xem đáp án » 26/09/2023 1,710

Bình luận


Bình luận