Câu hỏi:

26/09/2023 687 Lưu

Cho hình nón có đường cao h = 5a và bán kính đáy r = 12a. Gọi (α) là mặt phẳng đi qua đỉnh của hình nón và cắt đường tròn theo dây cũng có độ dài 10a. Tính diện tích thiết diện tạo bởi mặt phẳng (α) và hình nón đã cho.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Cho hình nón có đường cao h = 5a và bán kính đáy r = 12a. Gọi (alpha) là mặt phẳng  (ảnh 1)

Gọi S là đỉnh của hình nón và O là tâm của đường tròn đáy

Giả sử mặt phẳng (α) cắt hình nón theo một thiết diện là tam giác SAB cân tại S

Theo giả thiết ta có: SO = 5a, OA = OB = 12a và AB = 10a

Gọi M là trung điểm của AB

Suy ra \(MA = MB = \frac{{AB}}{2} = \frac{{10{\rm{a}}}}{2} = 5{\rm{a}}\)

Tam giác OAB cân tại O có OM là trung tuyến

Suy ra OM là đường cao. Hay OM AB

Vì tam giác AOM vuông tại M nên \(O{M^2} = O{A^2} - M{A^2} = 144{{\rm{a}}^2} - 25{{\rm{a}}^2} = 119{{\rm{a}}^2}\)

Vì tam giác SOM vuông tại O nên \[{\rm{S}}M = \sqrt {S{O^2} + O{M^2}} = \sqrt {25{{\rm{a}}^2} + 119{{\rm{a}}^2}} = 12{\rm{a}}\]

Tam giác SAB cân tại S có SM là trung tuyến

Suy ra SM là đường cao

Do đó diện tích tam giác SAB là \[S = \frac{1}{2}SM.AB = \frac{1}{2}.12{\rm{a}}.10{\rm{a}} = 60{a^2}\]

Vậy ta chọn đáp án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Vì nam nữ được sắp xếp tùy ý nên sử dụng hoán vị cho 5 nam + 5 nữ = 10 người

Suy ra có 10! = 3 628 800 cách xếp.

b) Chọn 1 dãy xếp nam ngồi có 2 cách.

Xếp 5 bạn nam vào các vị trí trong dãy đã chọn có 5! cách

Xếp nữ vào dãy còn lại có 1 cách

Xếp nữ vào các vị trí trong dãy đó có 5! cách

Suy ra có: 2 . 5! . 1 .5! = 28 800 cách.

Lời giải

Đáp án đúng là: D

Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC vuông tại A, AB = a căn bậc hai 3 (ảnh 1)

Gọi H là hình chiếu của A trên BC

Ta có AH BC, AH BB’ nên AH (BCC’B’)

Suy ra HC’ là hình chiếu của AC’ trên mặt phẳng (BCC’B’)

Do đó góc giữa AC’ và mặt phẳng (BCC’B’) là góc \(\widehat {AC'H}\)

Vì tam giác ABC vuông tại A nên \[{{\rm{S}}_{ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}AH.BC\]

Vì tam giác ABC vuông tại A nên theo định lý Pytago có

\(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {3{{\rm{a}}^2} + {a^2}} = 2{\rm{a}}\)

Suy ra \(AH = \frac{{AC.AB}}{{BC}} = \frac{{a\sqrt 3 .a}}{{2{\rm{a}}}} = \frac{{a\sqrt 3 }}{2}\)

Vì tam giác AA’C’ vuông tại A’ nên theo định lý Pytago có

\(AC' = \sqrt {AA{'^2} + A'C{'^2}} = \sqrt {{{\rm{a}}^2} + {a^2}} = \sqrt 2 {\rm{a}}\)

Xét tam giác AC’H có

\[\sin \widehat {AC'H} = \frac{{AH}}{{AC'}} = \frac{{\frac{{a\sqrt 3 }}{2}}}{{a\sqrt 2 }} = \frac{{\sqrt 6 }}{4}\]

Vậy ta chọn đáp án D.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP