Câu hỏi:
26/09/2023 2,075
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = AD = 2a, CD = a. Gọi I là trung điểm cạnh AD, biết hai mặt phẳng (SBI), (SCI) cùng vuông góc với đáy và thể tích khối chóp S.ABCD bằng \(\frac{{3\sqrt {15} {a^3}}}{5}\). Tính góc giữa hai mặt phẳng (SBC) và (ABCD).
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = AD = 2a, CD = a. Gọi I là trung điểm cạnh AD, biết hai mặt phẳng (SBI), (SCI) cùng vuông góc với đáy và thể tích khối chóp S.ABCD bằng \(\frac{{3\sqrt {15} {a^3}}}{5}\). Tính góc giữa hai mặt phẳng (SBC) và (ABCD).
Quảng cáo
Trả lời:
Đáp án đúng là: D

Gọi K là trung điểm đoạn AB ; H là chân đường cao kè từ I của tam giác IBC
Hai mặt phẳng (SBI) và (SCI) cùng vuông góc với đáy nên ta suy ra \(SI \bot (ABCD)\)
Ta có:
\(\begin{array}{l}{S_{ABCD}} = \frac{{(CD + AB).AD}}{2} = \frac{{\left( {a + 2{\rm{a}}} \right).2{\rm{a}}}}{2} = 3{a^2}\\{V_{S.ABCD}} = \frac{1}{3}SI.{S_{ABCD}} \Leftrightarrow \frac{{3\sqrt {15} {a^3}}}{5} = \frac{1}{3}.SI.3{{\rm{a}}^2}\\ \Rightarrow SI = \frac{{3\sqrt {15} a}}{5}\end{array}\)
Vì \(\left\{ {\begin{array}{*{20}{l}}{(SBC) \cap (ABCD) = BC}\\{BC \bot (SIH)}\\{(SIH) \cap (SBC) = SH}\\{(SIH) \cap (ABCD) = IH}\end{array}} \right.\) nên góc giữa hai mặt phẳng (SBC) và (ABCD) là \(\widehat {SHI}\)
Vì K là trung điểm của AB nên AK = BK = a
Mà CD = a suy ra AK = CD
Mà AK // CD (vì cùng vuông góc với AD)
Suy ra AKCD là hình bình hành
Lại có \(\widehat {A{\rm{DC}}} = 90^\circ \) nên AKCD là hình chữ nhật
Do đó CK = AD = 2a và \(CK \bot AB\)
Suy ra tam giác CBK vuông tại K. Theo định lý Pytago có
\(BC = \sqrt {B{K^2} + C{K^2}} = \sqrt {{a^2} + 4{{\rm{a}}^2}} = a\sqrt 5 \)
Ta có \[{{\rm{S}}_{IBC}} = {S_{ABC{\rm{D}}}} - {S_{ABI}} - {S_{C{\rm{D}}I}} = 3{{\rm{a}}^2} - \frac{1}{2}.a.2{\rm{a}} - \frac{1}{2}.a.a = \frac{3}{2}{a^2}\]
\({S_{IBC}} = \frac{1}{2}IH.BC \Rightarrow IH = \frac{{2{{\rm{S}}_{IBC}}}}{{BC}} = \frac{{3{{\rm{a}}^2}}}{{a\sqrt 5 }} = \frac{{3a}}{{\sqrt 5 }}\)
Xét tam giác SHI có:
\(\tan \widehat {SHI} = \frac{{SI}}{{HI}} = \frac{{\frac{{3\sqrt {15} a}}{5}}}{{\frac{{3{\rm{a}}}}{{\sqrt 5 }}}} = \sqrt 3 \)
Suy ra \(\widehat {SHI} = 60^\circ \)
Do đó giữa hai mặt phẳng (SBC) và (ABCD) là 60°
Vậy ta chọn đáp án D.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Vì nam nữ được sắp xếp tùy ý nên sử dụng hoán vị cho 5 nam + 5 nữ = 10 người
Suy ra có 10! = 3 628 800 cách xếp.
b) Chọn 1 dãy xếp nam ngồi có 2 cách.
Xếp 5 bạn nam vào các vị trí trong dãy đã chọn có 5! cách
Xếp nữ vào dãy còn lại có 1 cách
Xếp nữ vào các vị trí trong dãy đó có 5! cách
Suy ra có: 2 . 5! . 1 .5! = 28 800 cách.
Lời giải
Đáp án đúng là: D

Gọi H là hình chiếu của A trên BC
Ta có AH ⊥ BC, AH ⊥ BB’ nên AH ⊥ (BCC’B’)
Suy ra HC’ là hình chiếu của AC’ trên mặt phẳng (BCC’B’)
Do đó góc giữa AC’ và mặt phẳng (BCC’B’) là góc \(\widehat {AC'H}\)
Vì tam giác ABC vuông tại A nên \[{{\rm{S}}_{ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}AH.BC\]
Vì tam giác ABC vuông tại A nên theo định lý Pytago có
\(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {3{{\rm{a}}^2} + {a^2}} = 2{\rm{a}}\)
Suy ra \(AH = \frac{{AC.AB}}{{BC}} = \frac{{a\sqrt 3 .a}}{{2{\rm{a}}}} = \frac{{a\sqrt 3 }}{2}\)
Vì tam giác AA’C’ vuông tại A’ nên theo định lý Pytago có
\(AC' = \sqrt {AA{'^2} + A'C{'^2}} = \sqrt {{{\rm{a}}^2} + {a^2}} = \sqrt 2 {\rm{a}}\)
Xét tam giác AC’H có
\[\sin \widehat {AC'H} = \frac{{AH}}{{AC'}} = \frac{{\frac{{a\sqrt 3 }}{2}}}{{a\sqrt 2 }} = \frac{{\sqrt 6 }}{4}\]
Vậy ta chọn đáp án D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.