Câu hỏi:

26/09/2023 2,075

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = AD = 2a, CD = a. Gọi I là trung điểm cạnh AD, biết hai mặt phẳng (SBI), (SCI) cùng vuông góc với đáy và thể tích khối chóp S.ABCD bằng \(\frac{{3\sqrt {15} {a^3}}}{5}\). Tính góc giữa hai mặt phẳng (SBC) và (ABCD).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = AD = 2a (ảnh 1)

Gọi K là trung điểm đoạn AB ; H là chân đường cao kè từ I của tam giác IBC

Hai mặt phẳng (SBI) và (SCI) cùng vuông góc với đáy nên ta suy ra \(SI \bot (ABCD)\)

Ta có:

\(\begin{array}{l}{S_{ABCD}} = \frac{{(CD + AB).AD}}{2} = \frac{{\left( {a + 2{\rm{a}}} \right).2{\rm{a}}}}{2} = 3{a^2}\\{V_{S.ABCD}} = \frac{1}{3}SI.{S_{ABCD}} \Leftrightarrow \frac{{3\sqrt {15} {a^3}}}{5} = \frac{1}{3}.SI.3{{\rm{a}}^2}\\ \Rightarrow SI = \frac{{3\sqrt {15} a}}{5}\end{array}\)

\(\left\{ {\begin{array}{*{20}{l}}{(SBC) \cap (ABCD) = BC}\\{BC \bot (SIH)}\\{(SIH) \cap (SBC) = SH}\\{(SIH) \cap (ABCD) = IH}\end{array}} \right.\) nên góc giữa hai mặt phẳng (SBC) và (ABCD) là \(\widehat {SHI}\)

Vì K là trung điểm của AB nên AK = BK = a

Mà CD = a suy ra AK = CD

Mà AK // CD (vì cùng vuông góc với AD)

Suy ra AKCD là hình bình hành

Lại có \(\widehat {A{\rm{DC}}} = 90^\circ \) nên AKCD là hình chữ nhật

Do đó CK = AD = 2a và \(CK \bot AB\)

Suy ra tam giác CBK vuông tại K. Theo định lý Pytago có

\(BC = \sqrt {B{K^2} + C{K^2}} = \sqrt {{a^2} + 4{{\rm{a}}^2}} = a\sqrt 5 \)

Ta có \[{{\rm{S}}_{IBC}} = {S_{ABC{\rm{D}}}} - {S_{ABI}} - {S_{C{\rm{D}}I}} = 3{{\rm{a}}^2} - \frac{1}{2}.a.2{\rm{a}} - \frac{1}{2}.a.a = \frac{3}{2}{a^2}\]

\({S_{IBC}} = \frac{1}{2}IH.BC \Rightarrow IH = \frac{{2{{\rm{S}}_{IBC}}}}{{BC}} = \frac{{3{{\rm{a}}^2}}}{{a\sqrt 5 }} = \frac{{3a}}{{\sqrt 5 }}\)

Xét tam giác SHI có:

\(\tan \widehat {SHI} = \frac{{SI}}{{HI}} = \frac{{\frac{{3\sqrt {15} a}}{5}}}{{\frac{{3{\rm{a}}}}{{\sqrt 5 }}}} = \sqrt 3 \)

Suy ra \(\widehat {SHI} = 60^\circ \)

Do đó giữa hai mặt phẳng (SBC) và (ABCD) là 60°

Vậy ta chọn đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Vì nam nữ được sắp xếp tùy ý nên sử dụng hoán vị cho 5 nam + 5 nữ = 10 người

Suy ra có 10! = 3 628 800 cách xếp.

b) Chọn 1 dãy xếp nam ngồi có 2 cách.

Xếp 5 bạn nam vào các vị trí trong dãy đã chọn có 5! cách

Xếp nữ vào dãy còn lại có 1 cách

Xếp nữ vào các vị trí trong dãy đó có 5! cách

Suy ra có: 2 . 5! . 1 .5! = 28 800 cách.

Lời giải

Đáp án đúng là: D

Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC vuông tại A, AB = a căn bậc hai 3 (ảnh 1)

Gọi H là hình chiếu của A trên BC

Ta có AH BC, AH BB’ nên AH (BCC’B’)

Suy ra HC’ là hình chiếu của AC’ trên mặt phẳng (BCC’B’)

Do đó góc giữa AC’ và mặt phẳng (BCC’B’) là góc \(\widehat {AC'H}\)

Vì tam giác ABC vuông tại A nên \[{{\rm{S}}_{ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}AH.BC\]

Vì tam giác ABC vuông tại A nên theo định lý Pytago có

\(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {3{{\rm{a}}^2} + {a^2}} = 2{\rm{a}}\)

Suy ra \(AH = \frac{{AC.AB}}{{BC}} = \frac{{a\sqrt 3 .a}}{{2{\rm{a}}}} = \frac{{a\sqrt 3 }}{2}\)

Vì tam giác AA’C’ vuông tại A’ nên theo định lý Pytago có

\(AC' = \sqrt {AA{'^2} + A'C{'^2}} = \sqrt {{{\rm{a}}^2} + {a^2}} = \sqrt 2 {\rm{a}}\)

Xét tam giác AC’H có

\[\sin \widehat {AC'H} = \frac{{AH}}{{AC'}} = \frac{{\frac{{a\sqrt 3 }}{2}}}{{a\sqrt 2 }} = \frac{{\sqrt 6 }}{4}\]

Vậy ta chọn đáp án D.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP