Câu hỏi:
13/07/2024 2,387
Cho hình hộp ABCD.A'B'C'D' có đáy ABCD là hình chữ nhật. Biết AC = AA' = 2a. Giá trị lớn nhất của thể tích hình hộp ABCD.A'B'C'D' bằng
Cho hình hộp ABCD.A'B'C'D' có đáy ABCD là hình chữ nhật. Biết AC = AA' = 2a. Giá trị lớn nhất của thể tích hình hộp ABCD.A'B'C'D' bằng
Quảng cáo
Trả lời:

Xét tam giác ABC vuông tại B, có AC2 = AB2 + BC2.
Ta có SABCD = AB × BC ≤ . Dấu “=” xảy ra khi AB = BC.
Gọi H là hình chiếu của A' trên mặt phẳng (ABCD). Khi đó A'H ^ (ABCD). Khi đó AH là hình chiếu của AA' trên mặt phẳng (ABCD).
Gọi a là góc tạo bởi đường thẳng AA' và mặt phẳng (ABCD). Khi đó .
Xét tam giác A'AH vuông tại H có A'H = AA' × sina ≤ AA' = 2a.
Dấu bằng xảy ra khi a = 90° hay AA' ^ (ABCD).
Do đó VABCD.A'B'C'D' = SABCD × A'H ≤ 2a2 × 2a = 4a3.
Vậy giá trị lớn nhất của thể tích hình hộp ABCD.A'B'C'D' bằng 4a3.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Kẻ AD ^ BC tại D.
Vì SA ^ (ABC) nên SA ^ BC mà AD ^ BC nên BC ^ (SAD), suy ra (SBC) ^ (SAD).
Kẻ AF ^ SD tại F.
Vì (SBC) ^ (SAD), (SBC) Ç (SAD) = SD, AF ^ SD nên AF ^ (SBC).
Suy ra d(A, (SBC)) = AF.
Vì tam giác ABC đều cạnh a, AD là đường cao nên AD = .
Vì SA ^ (ABC) nên SA ^ AD hay tam giác SAD vuông tại A.
Xét tam giác SAD vuông tại A, AF là đường cao nên ta có
.
Vậy d(A, (SBC)) = .
Lời giải

Gọi O là giao điểm của AC và BD. Vì ABCD là hình vuông nên O là trung điểm của AC, BD và AC BD.
Có AD // B'C' và AD = B'C' (vì cùng song song và bằng BC) nên ADC'B' là hình bình hành, suy ra AB' // DC'. Do đó AB' // (BDC').
Khi đó d(AB', BC') = d(AB', (BDC')) = d(A, (BDC')) = d(C, (BDC')) .
Giả sử hình lập phương ABCD.A'B'C'D' có cạnh là a.
Xét tam giác ABC vuông tại B có .
Vì CC' (ABCD) nên CC' AC hay tam giác ACC' vuông tại C.
Xét tam giác ACC' vuông tại C, có .
Do đó hình lập phương ABCD.A'B'C'D' có cạnh là 1 nên AC = .
Vì O là trung điểm của AC nên CO = .
Có AC BD, BD AA' (do AA' (ABCD)), suy ra BD (ACC'A') mà BD Ì (BDC') nên (BDC') (ACC'A') .
Kẻ CE C'O tại E.
Vì (BDC') (ACC'A'), (BDC') (ACC'A') = C'O mà CE C'O nên CE (BDC').
Khi đó d(C, (BDC')) = CE.
Xét tam giác C'CO vuông tại C, CE là đường cao có:
.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.