Câu hỏi:

13/07/2024 2,328

Cho hình hộp ABCD.A'B'C'D' có đáy ABCD là hình chữ nhật. Biết AC = AA' = 2a. Giá trị lớn nhất của thể tích hình hộp ABCD.A'B'C'D' bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình hộp ABCD.A'B'C'D' có đáy ABCD là hình chữ nhật. Biết AC = AA' = 2a. Giá trị lớn nhất của thể tích hình hộp ABCD.A'B'C'D' bằng (ảnh 1)

Xét tam giác ABC vuông tại B, có AC2 = AB2 + BC2.

Ta có SABCD = AB × BC ≤AB2+BC22=AC22=2a2 . Dấu “=” xảy ra khi AB = BC.

Gọi H là hình chiếu của A' trên mặt phẳng (ABCD). Khi đó A'H ^ (ABCD). Khi đó AH là hình chiếu của AA' trên mặt phẳng (ABCD).

Gọi a là góc tạo bởi đường thẳng AA' và mặt phẳng (ABCD). Khi đó .

Xét tam giác A'AH vuông tại H có A'H = AA' × sina ≤ AA' = 2a.

Dấu bằng xảy ra khi a = 90° hay AA' ^ (ABCD).

Do đó VABCD.A'B'C'D' = SABCD × A'H ≤ 2a2 × 2a = 4a3.

Vậy giá trị lớn nhất của thể tích hình hộp ABCD.A'B'C'D' bằng 4a3.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a và SA  (ABC), SA= a căn 2 . Khoảng cách từ A đến mặt phẳng (SBC) bằng (ảnh 1)

 

Kẻ AD ^ BC tại D.

Vì SA ^ (ABC) nên SA ^ BC mà AD ^ BC nên BC ^ (SAD), suy ra (SBC) ^ (SAD).

Kẻ AF ^ SD tại F.

Vì (SBC) ^ (SAD), (SBC) Ç (SAD) = SD, AF ^ SD nên AF ^ (SBC).

Suy ra d(A, (SBC)) = AF.

Vì tam giác ABC đều cạnh a, AD là đường cao nên AD = a32 .

Vì SA ^ (ABC) nên SA ^ AD hay tam giác SAD vuông tại A.

Xét tam giác SAD vuông tại A, AF là đường cao nên ta có

 1AF2=1SA2+1AD2=12a2+43a2=12a2+43a2=116a2AF=66a11 .

Vậy d(A, (SBC)) = 66a11  .

Lời giải

Cho hình lập phương ABCD.A'B'C'D' có AC'= a căn 3 . Khoảng cách giữa hai đường thẳng AB' và BC' bằng (ảnh 1)

 

Gọi O là giao điểm của AC và BD. Vì ABCD là hình vuông nên O là trung điểm của AC, BD và AC BD.

Có AD // B'C' và AD = B'C' (vì cùng song song và bằng BC) nên ADC'B' là hình bình hành, suy ra AB' // DC'. Do đó AB' // (BDC').

Khi đó d(AB', BC') = d(AB', (BDC')) = d(A, (BDC')) = d(C, (BDC')) .

Giả sử hình lập phương ABCD.A'B'C'D' có cạnh là a.

Xét tam giác ABC vuông tại B có AC=AB2+BC2=a2+a2=a2  .

Vì CC' (ABCD) nên CC' AC hay tam giác ACC' vuông tại C.

Xét tam giác ACC' vuông tại C, có  AC'2=AC2+CC'23=2a2+a2a=1.

Do đó hình lập phương ABCD.A'B'C'D' có cạnh là 1 nên AC = 2  .

Vì O là trung điểm của AC nên CO = 22  .

Có AC BD, BD AA' (do AA' (ABCD)), suy ra BD (ACC'A') mà BD Ì (BDC') nên (BDC') (ACC'A') .

Kẻ CE C'O tại E.

Vì (BDC') (ACC'A'), (BDC') (ACC'A') = C'O mà CE C'O nên CE (BDC').

Khi đó d(C, (BDC')) = CE.

Xét tam giác C'CO vuông tại C, CE là đường cao có:

1CE2=1CC'2+1CO2=11+1222=3CE2=13CE=33.

dAB',BC'=33

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay