Câu hỏi:
13/07/2024 2,830
Mùa xuân ở hội Lim (tỉnh Bắc Ninh) thường có trò chơi đu. Khi người chơi đu nhún cây đu sẽ đưa người chơi dao động qua lại quanh vị trí cân bằng. Giả sử khoảng cách h (tính bằng mét) từ người chơi đu đến vị trí cân bằng được tính theo thời gian t (t ³ 0 và được tính bằng giây) bởi hệ thức h = |d| với , trong đó ta quy ước rằng d > 0 khi vị trí cân bằng ở về phía sau lưng người chơi đu và d < 0 trong trường hợp ngược lại.
a) Tìm các thời điểm trong vòng 2 giây đầu tiên mà người chơi đu ở xa vị trí cân bằng nhất.
Mùa xuân ở hội Lim (tỉnh Bắc Ninh) thường có trò chơi đu. Khi người chơi đu nhún cây đu sẽ đưa người chơi dao động qua lại quanh vị trí cân bằng. Giả sử khoảng cách h (tính bằng mét) từ người chơi đu đến vị trí cân bằng được tính theo thời gian t (t ³ 0 và được tính bằng giây) bởi hệ thức h = |d| với , trong đó ta quy ước rằng d > 0 khi vị trí cân bằng ở về phía sau lưng người chơi đu và d < 0 trong trường hợp ngược lại.
a) Tìm các thời điểm trong vòng 2 giây đầu tiên mà người chơi đu ở xa vị trí cân bằng nhất.

Quảng cáo
Trả lời:
a) Ta có h = |d| .
Vậy người chơi đu ở xa vị trí cân bằng nhất khi và chỉ khi , k Î ℤ.
Mà t Î [0; 2] nên , mà k Î ℤ nên k = 0; k = 1.
Với k = 0 thì t = (giây), k = 1 thì t = 2 (giây).
Vậy có 2 thời điểm t = giây và t = 2 giây người chơi đu ở xa vị trí cân bằng nhất.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Kẻ AD ^ BC tại D.
Vì SA ^ (ABC) nên SA ^ BC mà AD ^ BC nên BC ^ (SAD), suy ra (SBC) ^ (SAD).
Kẻ AF ^ SD tại F.
Vì (SBC) ^ (SAD), (SBC) Ç (SAD) = SD, AF ^ SD nên AF ^ (SBC).
Suy ra d(A, (SBC)) = AF.
Vì tam giác ABC đều cạnh a, AD là đường cao nên AD = .
Vì SA ^ (ABC) nên SA ^ AD hay tam giác SAD vuông tại A.
Xét tam giác SAD vuông tại A, AF là đường cao nên ta có
.
Vậy d(A, (SBC)) = .
Lời giải

Gọi O là giao điểm của AC và BD. Vì ABCD là hình vuông nên O là trung điểm của AC, BD và AC BD.
Có AD // B'C' và AD = B'C' (vì cùng song song và bằng BC) nên ADC'B' là hình bình hành, suy ra AB' // DC'. Do đó AB' // (BDC').
Khi đó d(AB', BC') = d(AB', (BDC')) = d(A, (BDC')) = d(C, (BDC')) .
Giả sử hình lập phương ABCD.A'B'C'D' có cạnh là a.
Xét tam giác ABC vuông tại B có .
Vì CC' (ABCD) nên CC' AC hay tam giác ACC' vuông tại C.
Xét tam giác ACC' vuông tại C, có .
Do đó hình lập phương ABCD.A'B'C'D' có cạnh là 1 nên AC = .
Vì O là trung điểm của AC nên CO = .
Có AC BD, BD AA' (do AA' (ABCD)), suy ra BD (ACC'A') mà BD Ì (BDC') nên (BDC') (ACC'A') .
Kẻ CE C'O tại E.
Vì (BDC') (ACC'A'), (BDC') (ACC'A') = C'O mà CE C'O nên CE (BDC').
Khi đó d(C, (BDC')) = CE.
Xét tam giác C'CO vuông tại C, CE là đường cao có:
.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.