Câu hỏi:

13/07/2024 1,325

Cho tứ diện OABCOA = OB = OC = a, AOB^=AOC^=60°   và BOC^=90°  .

a) Chứng minh rằng (OBC) ^ (ABC).

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tứ diện OABC có OA = OB = OC = a, góc AOB= góc AOC= 60 độ  và BOC= 90 độ . a) Chứng minh rằng (OBC)  (ABC). (ảnh 1)

a) Gọi M là trung điểm của BC.

Xét tam giác OBC có OB = OC = a nên tam giác OBC cân tại O mà OM là trung tuyến nên OM đồng thời là đường cao hay OM ^ BC.

Vì tam giác OAC có OA = OC = a và AOC^=60°  nên tam giác OAC đều, suy ra AC = a.

Vì tam giác OAB có OA = OB = a và AOB^=60°  nên tam giác OAB đều, suy ra AB = a.

Xét tam giác OBC vuông tại O, có BC=OC2+OB2=a2+a2=a2  .

Xét tam giác OBC vuông tại O, OM là đường cao, có

1OM2=1OB2+1OC2=1a2+1a2=2a2OM=a2.

Vì BC2 = 2a2 = a2 + a2 = AB2 + AC2 nên tam giác ABC vuông tại A.

Mặt khác AB = AC nên tam giác ABC cân tại A có AM là trung tuyến nên AM đồng thời là đường cao hay AM ^ BC.

Xét tam giác ABC vuông tại A, AM là đường cao có:

1AM2=1AB2+1AC2=1a2+1a2=2a2AM=a2.

Vì OA2 = a2 = a22+a22 = OM2 + AM2 nên tam giác OMA vuông tại M, suy ra OM ^ MA.

Vì OM ^ MA và OM ^ BC nên OM ^ (ABC) mà OM Ì (OBC), suy ra (OBC) ^ (ABC).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a và SA ^ (ABC),SA=a2 . Khoảng cách từ A đến mặt phẳng (SBC) bằng

Xem đáp án » 13/07/2024 6,693

Câu 2:

Để xác định tính acid và tính base của các dung dịch, người ta sử dụng khái niệm độ pH. Độ pH của một dung dịch được cho bởi công thức pH = −log[H+], trong đó [H+] là nồng độ của ion hydrogen (tính bằng mol/lít).

a) Tính độ pH của một dung dịch có nồng độ ion hydrogen là 0,1 mol/lít.

Xem đáp án » 13/07/2024 4,554

Câu 3:

b) Tính theo a khoảng cách giữa hai đường thẳng BDSC.

Xem đáp án » 13/07/2024 4,136

Câu 4:

Cho hình lập phương ABCD.A'B'C'D' có AC'=3 . Khoảng cách giữa hai đường thẳng AB' và BC' bằng

Xem đáp án » 13/07/2024 3,407

Câu 5:

Cho đồ thị ba hàm số mũ y = ax, y = bx và y = cx như trong hình vẽ dưới đây. Khẳng định nào sau đây là đúng?

Cho đồ thị ba hàm số mũ y = ax, y = bx và y = cx như trong hình vẽ dưới đây. Khẳng định nào sau đây là đúng? (ảnh 1)

Xem đáp án » 19/10/2023 3,362

Câu 6:

Rút gọn các biểu thức sau:

b) B=sin4x1+cos4xcos2x1+cos2xcot3π2x ;

Xem đáp án » 13/07/2024 3,293

Câu 7:

Khẳng định nào sau đây là đúng?

Xem đáp án » 19/10/2023 2,910

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn