Câu hỏi:

13/07/2024 18,264

Tại các trường trung học phổ thông của một tỉnh, thống kê cho thấy có 63% giáo viên môn Toán tham khảo bộ sách giáo khoa A, 56% giáo viên môn Toán tham khảo bộ sách giáo khoa B và 28,5% giáo viên môn Toán tham khảo cả hai bộ sách giáo khoa A và B. Tính tỉ lệ giáo viên môn Toán tại các trường trung học phổ thông của tỉnh đó không tham khảo cả hai bộ sách giáo khoa A và B.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi A là biến cố “Giáo viên môn Toán tham khảo bộ sách A”; B là biến cố “Giáo viên môn Toán tham khảo bộ sách B”.

Do đó, A ∩ B là biến cố “Giáo viên Toán tham khảo cả hai bộ sách A và B”;

C = A B là biến cố “Giáo viên Toán tham khảo ít nhất một trong hai bộ sách A và B”.

Biến cố đối của C là biến cố C¯: “Giáo viên Toán không tham khảo cả hai bộ sách giáo khoa A và B”.

Ta có:

P(A) = 63% = 0,63

P(B) = 56% = 0,56

P(AB) = 28,5% = 0,285

Áp dụng công thức cộng xác suất ta có:

P(C) = P(A B) = P(A) + P(B) – P(AB) = 0,63 + 0,56 – 0,285 = 0,905.

Áp dụng công thức xác suất cho biến cố đối ta có:

P(C¯) = 1 – P(C) = 1 – 0,905 = 0,095.

Vậy xác suất để giáo viên đó không tham khảo cả hai bộ sách giáo khoa A và B là 0,095. Tức là, tỉ lệ có 9,5% giáo viên môn Toán tại các trường trung học phổ thông của tỉnh đó không tham khảo cả hai bộ sách giáo khoa A và B.

Avatar

Hùng

Khổ nhỉ lấy a hợp b trừ a giao b rồi lấy 100 trừ cho kết quả nãy là ra r : kq= 100-(63+56-28,5)=9,5

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi A là biến cố “Bạn Sơn lấy được viên bi màu xanh, bạn Tùng lấy được viên bi màu xanh”; B là biến cố “Bạn Sơn lấy được viên bi màu đỏ, bạn Tùng lấy được viên bi màu xanh”.

Do đó, biến cố “bạn Tùng lấy được viên bi màu xanh” là biến cố hợp của A và B.

Vì A và B là hai biến cố xung khắc nên ta áp dụng công thức cộng xác suất cho hai biến cố xung khắc có:

P(A B) = P(A) + P(B).

+ Không gian mẫu Ω:

Hộp bao gồm: 6 + 8 = 14 viên bi

Mỗi phần tử của Ω được chọn bởi hai công đoạn:

Công đoạn 1: Bạn Sơn lấy ngẫu nhiên một viên bi từ hộp (lấy xong không trả lại vào hộp). Có C141 = 14 (cách chọn).

Công đoạn 2: Sau công đoạn 1, hộp còn lại 13 viên bi. Bạn Tùng lấy lấy ngẫu nhiên một viên bi từ hộp đó. Có C131 = 13 (cách chọn)

Theo quy tắc nhân, ta có: n(Ω) = 14 . 13 = 182.

+ Tính P(A):

Mỗi phần tử của A được chọn bởi hai công đoạn:

Công đoạn 1: Bạn Sơn lấy ngẫu nhiên một viên bi trong 8 viên bi màu xanh từ hộp (lấy xong không trả lại vào hộp). Có 8 cách chọn.

Công đoạn 2: Bạn Tùng lấy ngẫu nhiên một viên bi trong 7 viên bi màu xanh còn lại trong hộp đó. Có 7 cách chọn.

Theo quy tắc nhân, ta có: n(A) = 8 . 7 = 56.

Suy ra: P(A) = 56182=413.

+ Tính P(B):

Mỗi phần tử của B được chọn bởi hai công đoạn:

Công đoạn 1: Bạn Sơn lấy ngẫu nhiên một viên bi trong 6 viên bi màu đỏ từ hộp (lấy xong không trả lại vào hộp). Có 6 cách chọn.

Công đoạn 2: Bạn Tùng lấy ngẫu nhiên một viên bi trong 8 viên bi màu xanh còn lại trong hộp đó. Có 8 cách chọn.

Theo quy tắc nhân, ta có: n(B) = 6 . 8 = 48.

Suy ra: P(B) = 48182=2491.

Do đó, ta có: P(A B) = P(A) + P(B) = 413+2491=47.

Vậy xác suất để bạn Tùng lấy được viên bi màu xanh là 47.

Lời giải

Gọi A là biến cố “Chọn được hai quả cầu màu xanh”; B là biến cố “Chọn được hai quả cầu màu đỏ”; C là biến cố “Chọn được hai quả cầu có cùng màu”.

Biến cố C xảy ra khi và chỉ khi hai quả cầu được chọn có cùng màu đỏ hoặc có cùng màu xanh. Biến cố A xảy ra khi hai quả cầu được chọn có cùng màu xanh. Biến cố B xảy ra khi hai quả cầu được chọn có cùng màu đỏ. Vậy C là biến cố hợp của A và B hay C = A B.

Vì A và B là hai biến cố xung khắc nên ta có:

P(C) = P(A B) = P(A) + P(B).

Do đó, ta cần tính P(A) và P(B).

Không gian mẫu Ω là tập hợp gồm các tập con có hai phần tử của tập có 5 + 3 = 8 phần tử. Do đó, n(Ω) = C82= 28.

Tính P(A):

Biến cố A là tập hợp gồm các tập con có hai phần tử của tập có 5 phần tử (5 quả cầu màu xanh). Do đó, n(A) = C52 = 10. Suy ra, P(A) = n(A)n(Ω)=1028=514.

Tính P(B):

Biến cố B là tập hợp gồm các tập con có hai phần tử của tập có 3 phần tử (3 quả cầu màu đỏ). Do đó, n(B) = C32 = 3. Suy ra, P(B) = n(B)n(Ω)=328.

Vậy P(C) = P(A) + P(B) = 514+328=1328.

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay