Câu hỏi:

13/07/2024 429

Trong Hình 64, hai mép của con đường gợi nên hình ảnh hai đường thẳng song song Δ và ∆’. Xét điểm A trên đường thẳng Δ.

Trong Hình 64, hai mép của con đường gợi nên hình ảnh hai đường thẳng song song delta và delta phẩy. Xét điểm A trên đường thẳng Δ. (ảnh 1)

a) Khoảng cách từ điểm A đến đường thẳng Δ’ có phụ thuộc vào vị trí của điểm A trên đường thẳng Δ hay không? Vì sao?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Trong Hình 64, hai mép của con đường gợi nên hình ảnh hai đường thẳng song song delta và delta phẩy. Xét điểm A trên đường thẳng Δ. (ảnh 2)

a) Gọi B là điểm thuộc Δ sao cho điểm B khác điểm A.

Kẻ AH ∆’, BK Δ’, với H, K Δ’.

Suy ra AH // BK (vì cùng vuông góc với Δ’).

Ta có: AH ∆’ và H ∆’ d(A, Δ’) = AH. (1)

           BK ∆’ và K ∆’ d(B, Δ’) = BK. (2)

Xét tứ giác ABKH có:

      AB // HK (do Δ // Δ’);

      AH // BK.

Suy ra ABKH là hình bình hành,

Do đó AH = BK. (3)

Từ (1), (2), (3) ta có: d(A, Δ’) = d(B, Δ’).

Vậy khoảng cách từ điểm A đến đường thẳng Δ’ không phụ thuộc vào vị trí của điểm A trên đường thẳng Δ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, SA ⊥ (ABC). Tính d(SA, BC). (ảnh 1)

Gọi I là trung điểm của BC.

Xét ∆ABC đều có: AI là đường trung tuyến (do I là trung điểm của BC).

Suy ra AI BC.

Do SA (ABC) và AI (ABC) nên SA AI.

Ta có: AI SA và AI BC.

Suy ra đoạn thẳng AI là đoạn vuông góc chung của hai đường thẳng SA và BC.

Từ đó ta có d(SA, BC) = AI.

Xét ∆ABC đều cạnh a, có I là trung điểm của BC nên BI=BC2=a2.

Áp dụng định lí Pythagore vào tam giác ABI vuông tại I (do AI BC) có:

AB2 = AI2 + BI2

Suy ra AI=AB2BI2=a2a22=a32.

Vậy dSA,BC=AI=a32.

Lời giải

c) Kẻ AH SD (H SD).

Do CD (SAD) (theo câu a) và AH (SAD) nên CD AH.

Ta có: AH CD, AH SD và CD ∩ SD = D trong (SCD).

Suy ra AH (SCD).

Khi đó d(A, (SCD)) = AH.

Áp dụng hệ thức lượng trong tam giác SAD vuông tại A, đường cao AH có:

1AH2=1SA2+1AD2=1a2+1a2=2a2

Suy ra AH=a22.

Do đó dA,SCD=AH=a22.

Vậy khoảng cách từ điểm A đến mặt phẳng (SCD) bằng a22.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP