Câu hỏi:

12/07/2024 174

Trong Hình 67, thanh gỗ dọc phía trên các cột và mặt đường hành lang gợi nên hình ảnh đường thẳng Δ và mặt phẳng (P) song song với nhau, chiều cao của chiếc cột có đỉnh cột A là khoảng cách từ điểm A đến mặt phẳng (P).

Trong Hình 67, thanh gỗ dọc phía trên các cột và mặt đường hành lang gợi nên hình ảnh đường thẳng Δ và mặt phẳng (P) (ảnh 1)

a) Khoảng cách từ điểm A đến mặt phẳng (P) có phụ thuộc vào vị trí của điểm A trên đường thẳng Δ hay không? Vì sao?

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Trong Hình 67, thanh gỗ dọc phía trên các cột và mặt đường hành lang gợi nên hình ảnh đường thẳng Δ và mặt phẳng (P) (ảnh 2)

a) Lấy B là điểm thuộc đường thẳng Δ sao cho điểm B khác điểm A.

Gọi H, K lần lượt là hình chiếu vuông góc của điểm A và B trên mặt phẳng (P) hay AH (P), BK (P).

Suy ra d(A, (P)) = AH và d(B, (P)) = BK.

Vì AH (P) và BK (P) nên AH // BK. (1)

Khi đó, hai đường thẳng AH và BK sẽ xác định một mặt phẳng là mặt phẳng (ABKH).

Ta có H, K cùng thuộc hai mặt phẳng (ABKH) và (P) nên HK = (ABKH) ∩ (P).

Do ∆ // (P) và A, B là hai điểm thuộc ∆ nên AB // (P).

Ta có: AB // (P), AB (ABKH), HK = (ABKH) ∩ (P).

Suy ra AB // HK. (2)

Từ (1) và (2) ta có ABKH là hình bình hành.

Suy ra AH = BK hay d(A, (P)) = d(B, (P)).

Vậy khoảng cách từ điểm A đến mặt phẳng (P) không phụ thuộc vào vị trí của điểm A trên đường thẳng Δ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, SA (ABC). Tính d(SA, BC).

Xem đáp án » 13/07/2024 8,895

Câu 2:

Cho hình lăng trụ ABC.A’B’C’ có cạnh bên bằng a, góc giữa đường thẳng AA’ và mặt phẳng (ABC) bằng 60°. Tính khoảng cách giữa hai mặt phẳng (ABC) và (A’B’C’).

Xem đáp án » 13/07/2024 2,651

Câu 3:

Cho hình chóp S.ABC có SA = a, góc giữa SA và mp(ABC) là 60°. Gọi M, N lần lượt là trung điểm của cạnh SA và SB. Chứng minh MN // (ABC) và tính d(MN, (ABC)).

Xem đáp án » 13/07/2024 2,549

Câu 4:

Cho hình chóp S.ABCD có SA (ABCD), đáy ABCD là hình vuông cạnh a, SA = a (Hình 78).

Cho hình chóp S.ABCD có SA vuông góc (ABCD), đáy ABCD là hình vuông cạnh a, SA = a (Hình 78).  (ảnh 1)

a) Tính khoảng cách từ điểm S đến đường thẳng CD.

Xem đáp án » 13/07/2024 2,089

Câu 5:

Cho hình chóp S.ABC có SA (ABC), AI BC (I BC), AH SI (H SI). Chứng minh rằng khoảng cách từ A đến mặt phẳng (SBC) bằng AH.

Xem đáp án » 12/07/2024 1,806

Câu 6:

b) Chứng minh rằng BD (SAC) và tính khoảng cách giữa hai đường thẳng BD và SC.

Xem đáp án » 11/07/2024 1,681

Câu 7:

Cho hình tứ diện ABCD có AB = a, BC = b, BD = c, ABC^=ABD^=BCD^=90°. Gọi M, N, P lần lượt là trung điểm của AB, AC, AD (Hình 77).

a) Tính khoảng cách từ điểm C đến đường thẳng AB.

Xem đáp án » 12/07/2024 1,563

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store