Câu hỏi:

11/07/2024 363

b) Chứng minh rằng MP // (BCD). Tính khoảng cách từ đường thẳng MP đến mặt phẳng (BCD).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b) Xét ABD có: M, P lần lượt là trung điểm của AB và AD nên MP là đường trung bình của ABD.

Do đó MP // BD.

Mà BD (BCD) nên MP // (BCD).

Suy ra d(MP, (BCD)) = d(M, (BCD)).

Ta có: AB (BCD) (theo câu b Bài tập 2) mà M AB nên MB (ABC).

Suy ra dM,BCD=MB=a2.

Nên dMP,BCD=dM,BCD=a2.

Vậy khoảng cách từ đường thẳng MP đến mặt phẳng (BCD) bằng a2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, SA ⊥ (ABC). Tính d(SA, BC). (ảnh 1)

Gọi I là trung điểm của BC.

Xét ∆ABC đều có: AI là đường trung tuyến (do I là trung điểm của BC).

Suy ra AI BC.

Do SA (ABC) và AI (ABC) nên SA AI.

Ta có: AI SA và AI BC.

Suy ra đoạn thẳng AI là đoạn vuông góc chung của hai đường thẳng SA và BC.

Từ đó ta có d(SA, BC) = AI.

Xét ∆ABC đều cạnh a, có I là trung điểm của BC nên BI=BC2=a2.

Áp dụng định lí Pythagore vào tam giác ABI vuông tại I (do AI BC) có:

AB2 = AI2 + BI2

Suy ra AI=AB2BI2=a2a22=a32.

Vậy dSA,BC=AI=a32.

Lời giải

c) Kẻ AH SD (H SD).

Do CD (SAD) (theo câu a) và AH (SAD) nên CD AH.

Ta có: AH CD, AH SD và CD ∩ SD = D trong (SCD).

Suy ra AH (SCD).

Khi đó d(A, (SCD)) = AH.

Áp dụng hệ thức lượng trong tam giác SAD vuông tại A, đường cao AH có:

1AH2=1SA2+1AD2=1a2+1a2=2a2

Suy ra AH=a22.

Do đó dA,SCD=AH=a22.

Vậy khoảng cách từ điểm A đến mặt phẳng (SCD) bằng a22.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP