Câu hỏi:

13/07/2024 1,391

Để làm cây thông noel, người ta hàn một khung sắt có dạng hình tam giác cân ABC (AB = AC = 2 m) cùng các thanh sắt nằm ngang GF, HE, ID, BC và sau đó gắn cây thông như Hình 22. Tính số tiền sắt cần sử dụng để làm cây thông noel đó.

Biết giá một mét sắt là 55 000 đồng và AG = GH = HI = IB, CD = DE = EF = FA, thanh GF dài 0,2 m.

Để làm cây thông noel, người ta hàn một khung sắt có dạng hình tam giác cân ABC (AB = AC = 2 m) cùng các thanh sắt nằm ngang GF, HE, ID, BC và sau đó gắn cây thông như Hình 22. Tính số tiền sắt cần sử dụng để làm cây thông noel đó.  Biết giá một mét sắt là 55 000 đồng và AG = GH = HI = IB, CD = DE = EF = FA, thanh GF dài 0,2 m. (ảnh 1)

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Do AG = GH nên G là trung điểm của AH.

      AF = FE nên F là trung điểm AE.

Xét ∆AHE có G, F lần lượt là trung điểm của AH, AE nên GF là đường trung bình của ∆AHE

Nên HE = 2GF = 2.0,2 = 0,4 (m).

• Do AH = AG + GH, BH = BI + IH, mà AG = GH = BI = IH

Nên AH = BH, hay H là trung điểm của AB.

• Do AE = AF + FE, EC = ED + CD, mà AF = FE = ED = CD

Nên AE = EC, hay E là trung điểm của AC.

Xét ∆ABC có H, E lần lượt là trung điểm của AB, AC nên HE là đường trung bình của ∆ABC, do đó BC = 2HE = 2.0,4 = 0,8 (m).

Ta có AI = 3BI, AB = 4BI nên AIAB=34

         AD = 3CD, AC = 4CD nên ADAC=34

Do đó, AIAB=ADAC=34

Xét ∆ABC có AIAB=ADAC, theo định lí Thalès đảo ta có ID // BC.

Theo hệ quả của định lí Thalès, ta có IDBC=AIAB=34

Suy ra ID=34BC=340,8=0,6 (m).

Số mét sắt cần sử dụng để làm cây thông noel đó là:

GF + HE + ID + BC + AB + AC = 0,2 + 0,4 + 0,6 + 0,8 + 2 + 2 = 6 (m).

Vậy số tiền cần trả để hoàn thành cây thông noel đó là:

6.55 000 = 330 000 (đồng).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tứ giác ABCD có AD = BC. Đường thẳng đi qua trung điểm M và N lần lượt của các cạnh AB và CD cắt các đường thẳng AD và BC lần lượt tại E và F. Chứng minh: AEM^=MFB^.

Xem đáp án » 13/07/2024 2,320

Câu 2:

Chọn phát biểu đúng trong các phát biểu sau:

a) Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng một phần ba cạnh đó.

b) Trong một tam giác chỉ có một đường trung bình.

c) Đường trung bình của tam giác là doạn thẳng nối trung điểm hai cạnh tam giác dó.

d) Đường trung bình của tam giác là đoạn thẳng nối từ một đỉnh đến trung điểm của cạnh đối diện.

Xem đáp án » 13/07/2024 1,852

Câu 3:

Cho tứ giác ABCD có M, N lần lượt là trung điểm của AD, BC. Chứng minh: MNAB+DC2. Dấu đẳng thức xảy ra khi nào?

Xem đáp án » 13/07/2024 1,601

Câu 4:

Cho tam giác ABC cân tại A, có M là trung điểm của BC. Kẻ tia Mx song song với AC cắt AB tại E và tia My song song với AB cắt AC tại F. Chứng minh:

a) EF là đường trung bình của tam giác ABC;

b) AM là đường trung trực của EF.

Xem đáp án » 13/07/2024 1,135

Câu 5:

Hình 21 cho biết cạnh của tam giác đều ABC bằng 6 cm; M, N lần lượt là trung điểm các cạnh AB, AC. Chỉ ra phát biểu sai trong các phát biểu sau:

a) Tam giác AMN là tam giác đều.

b) Hình thang BMNC là hình thang cân.

c) Chu vi tứ giác BMNC bằng hai phần ba chu vi tam giác ABC.

d) Độ dài đường trung bình MN bằng 2 cm.

Hình 21 cho biết cạnh của tam giác đều ABC bằng 6 cm; M, N lần lượt là trung điểm các cạnh AB, AC. Chỉ ra phát biểu sai trong các phát biểu sau: a) Tam giác AMN là tam giác đều. b) Hình thang BMNC là hình thang cân. c) Chu vi tứ giác BMNC bằng hai phần ba chu vi tam giác ABC. d) Độ dài đường trung bình MN bằng 2 cm.   (ảnh 1)

Xem đáp án » 13/07/2024 1,006

Câu 6:

Cho hình chữ nhật ABCD. Kẻ CH vuông góc với BD (H BD). Gọi I, K, M lần lượt là trung điềm của BH, CH, AD. Chứng minh:

a) Tứ giác IKDM là hình bình hành;

b) Gọi N là giao điểm của IMAH. Hỏi INthể là đường trung bình của tam giác HAB không? sao?

Xem đáp án » 13/07/2024 827

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn