Câu hỏi:
13/07/2024 1,539Cho hình vuông ABCD, gọi O là giao điểm của hai đường chéo, lấy G trên cạnh BC, H trên cạnh CD sao cho Gọi M là trung điểm của AB. Chứng minh:
a) ∆HOD ᔕ ∆OGB;
b) MG // AH.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình bình hành ABCD (AC > BD). Từ C kẻ CE vuông góc với AB (E thuộc đường thẳng AB), CF vuông góc với AD (F thuộc đường thẳng AD). Chứng minh: AB.AE + AD.AF = AC2.
Câu 2:
Cho hình thang ABCD có AB // CD, AB = 4 cm, DB = 6 cm và Tính độ dài CD.
Câu 3:
Cho tam giác ABC. Lấy E, F, P lần lượt thuộc AB, AC, BC sao cho tứ giác BEFP là hình bình hành (Hình 45). Biết diện tích tam giác AEF và CFP lần lượt bằng 16 cm2 và 25 cm2.
a) Hãy chỉ ra ba cặp tam giác đồng dạng.
b) Tính diện tích tam giác ABC.
Câu 4:
Bác An cần đo khoảng cách AC, với A, C nằm ở hai bên bờ của một hồ nước (Hình 44a). Bác An đã tiến hành đo như sau:
• Chọn điểm B trên bờ (có điểm C) sao cho BC = 20 m;
• Dùng thước đo góc, đo được các góc
Chứng minh rằng: Nếu thực hiện vẽ trên giấy một tam giác DEF sao cho EF = 10 (cm), (Hình 44b); Đo dộ dài đoạn DF và già sử DF = a (cm) thì độ dài AC mà bác An cần đo là 2a (m).
về câu hỏi!