Câu hỏi:

13/07/2024 455

Để đo khoảng cách AB, trong đó điểm B không tới được, người ta tiến hành đo bằng cách lấy các điểm C, D, E sao cho AD = 10 m, CD = 7 m, DE = 4 m (Hình 57). Khi đó, khoảng cách AB (tính theo đơn vị mét và làm tròn kết quả đến hàng phần mười) là:

Để đo khoảng cách AB, trong đó điểm B không tới được, người ta tiến hành đo bằng cách lấy các điểm C, D, E sao cho AD = 10 m, CD = 7 m, DE = 4 m (Hình 57). Khi đó, khoảng cách AB (tính theo đơn vị mét và làm tròn kết quả đến hàng phần mười) là:   A. 9,3 m. B. 9,4 m. C. 9,6 m. D. 9,7 m. (ảnh 1)

A. 9,3 m.

B. 9,4 m.

C. 9,6 m.

D. 9,7 m.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Ta có AC = AD + DC = 10 + 17 = 17 (m).

Do DE ⊥ AC, BA ⊥ AC nên DE // AB

Xét ∆ABC với DE // AB, ta có DEAB=CDCA (hệ quả của định lí Thalès)

Hay 4AB=717, suy ra AB=41779,7 m.

Vậy khoảng cách AB khoảng 9,7 m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có ba góc nhọn, các đường cao BDCE cắt nhau tại H. Chứng minh:

a) ∆EBH ∆DCH, ADE ∆ABC;

b) DB là tia phân giác của góc EDI, với I là giao điểm của AHBC.

Xem đáp án » 13/07/2024 3,488

Câu 2:

Cho tam giác ABC. Các điểm M, N lần lượt thuộc các cạnh AB và AC thỏa mãn MN // BC và AMMB=23. Tỉ số NCAN bằng

A. 23.

B. 25.

C. 32.

D. 35.

Xem đáp án » 13/07/2024 2,351

Câu 3:

Cho tam giác ABC vuông tại A, có đường phân giác AD. Vẽ hình vuông MNPQ ở đó M thuộc cạnh AB, N thuộc cạnh AC, PQ thuộc cạnh BC. Gọi EF lần lượt là giao điểm của BNMQ, CMNP (Hình 60). Chứng minh:

a) DE song song với AC;

b) DE = DF.

Cho tam giác ABC vuông tại A, có đường phân giác AD. Vẽ hình vuông MNPQ ở đó M thuộc cạnh AB, N thuộc cạnh AC, P và Q thuộc cạnh BC. Gọi E và F lần lượt là giao điểm của BN và MQ, CM và NP (Hình 60). Chứng minh: a) DE song song với AC; b) DE = DF. (ảnh 1)

Xem đáp án » 13/07/2024 2,231

Câu 4:

Cho tam giác ABC, điểm M thuộc cạnh BC sao cho MC = 2MB. Đường thẳng qua M song song với AC cắt AB D. Đường thẳng qua M song song với AB cắt AC E. Gọi x, y lần lượt là chu vi tam giác DBM và tam giác ECM. Tính x + 2y, biết chu vi tam giác ABC bằng 30 cm.

Xem đáp án » 13/07/2024 2,090

Câu 5:

∆ABC ᔕ ∆DEF theo tỉ số đồng dạng k, ∆MNP ᔕ ∆DEF theo tỉ số đồng dạng q. Khi đó, ∆ABC ᔕ ∆MNP theo tỉ số đồng dạng là:

A. k + q.

B. kq.

C. qk.

D. kq.

Xem đáp án » 13/07/2024 1,427

Câu 6:

Cho điểm M thuộc đoạn thẳng AB, với MA = a, MB = b. Vẽ hai tam giác đều AMCBMD; gọi E là giao điểm của ADCM, F là giao điểm của DMBC (Hình 58).

a) Chứng minh EF // AB.

b) Tính ME, MF theo a, b.

Cho điểm M thuộc đoạn thẳng AB, với MA = a, MB = b. Vẽ hai tam giác đều AMC và BMD; gọi E là giao điểm của AD và CM, F là giao điểm của DM và BC (Hình 58). a) Chứng minh EF // AB. b) Tính ME, MF  theo a, b.   (ảnh 1)

Xem đáp án » 13/07/2024 1,162

Câu 7:

Cho tam giác ABC cân tại A, AB = 10 cm, BC = 12 cm. Gọi Igiao điểm của các đường phân giác của tam giác ABC. Tính độ dài AI.

Xem đáp án » 13/07/2024 1,161

Bình luận


Bình luận