Câu hỏi:
06/12/2023 2,411Điều hướng LORAN (điều hướng vô tuyến đường dài) cho máy bay và tàu thủy sử dụng các xung đồng bộ được truyền bởi các trạm phát đặt cách xa nhau. Các xung này di chuyển với tốc độ ánh sáng (186 000 dặm/giây). Sự chênh lệch về thời gian nhận được phản xạ của các xung này từ một máy bay hoặc tàu thủy là không đổi, nên máy bay hoặc con tàu sẽ nằm trên một hyperbol có các trạm phát là các tiêu điểm. Giả sử rằng hai trạm phát, cách nhau 300 dặm, được đặt trên một hệ tọa độ vuông góc tại các điểm có tọa độ (–150; 0) và (150; 0) và một con tàu đang đi trên một con đường là một nhánh của hypebol (xem hình vẽ).
Biết rằng độ chênh lệch thời gian giữa các xung từ các trạm phát với con tàu là 1 000 micro giây (0,001 giây). Khoảng cách giữa tàu và trạm phát số 1 khi tàu vào bờ là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: B
Gọi đường đi của con tàu là (H) thì (H) có phương trình dạng (a, b > 0).
Với giả thiết ta có các tiêu điểm của (H) là F1(–150; 0) và F2(150; 0), suy ra c = 150.
Giả sử vị trí con tàu hiện tại là M(x0; 75) ∈ (H); theo giả thiết độ chênh lệch thời gian giữa các xung từ các trạm phát là 1 000 micro giây (0,001 giây), tức là ta có |MF1 – MF2| = 0,001.186 000 = 186 (dặm); tức là ta có 2a = 186 suy ra a = 93.
Do đó
Phương trình (H) là: .
Trạm phát số 1 nằm tại tiêu điểm F2(150; 0), vị trí khi con tàu vào bờ là đỉnh của (H) là A2(93; 0).
Vậy khoảng cách từ vị trí tàu vào bờ đến trạm số 1 là: F2A2 = 150 – 93 = 57 (dặm).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Để chụp toàn cảnh, ta có thể sử dụng một gương hypebol. Máy ảnh được hướng về phía đỉnh của gương và tâm quang học của máy ảnh được đặt tại một tiêu điểm của gương (hình vẽ).
Phương trình cho mặt cắt của gương là .
Khoảng cách từ quang tâm của máy ảnh đến đỉnh của gương (làm tròn kết quả đến chữ số thập phân thứ nhất) là
Câu 2:
Một con tàu đang trên hành trình đi song song với một bờ biển thẳng và cách bờ 80 km. Hai trạm truyền tin S1 và S2 nằm trên bờ biển, cách xa nhau 220 km. Bằng cách tính giờ các tín hiệu vô tuyến từ hai trạm, hoa tiêu của tàu xác định rằng con tàu đang ở giữa hai trạm và ở gần S2 hơn S1 là 60 km. Khoảng cách từ con tàu tới trạm S2 (làm tròn đến hai chữ số thập phân) là
Câu 3:
Hai tháp vô tuyến cách nhau 200 km được đặt dọc bờ biển với A nằm về phía Tây đối với B. Các tín hiệu vô tuyến được gửi đồng thời từ mỗi tháp tới một con tàu và tín hiệu ở B nhận được sớm hơn 500 micro giây trước tín hiệu ở A. Giả sử rằng các tín hiệu vô tuyến truyền đi với vận tốc 300 mét/micro giây và con tàu nằm về phía Bắc của tháp B thì tàu cách bờ biển bao xa (làm tròn đến hai chữ số thập phân)?
Câu 4:
Một gương hypebol (được sử dụng trong một số kính thiên văn) có tính chất là một tia sáng hướng vào tiêu điểm sẽ bị phản xạ sang tiêu điểm khác. Gương trong hình vẽ có phương trình . Điểm nào trên gương sẽ nhận được tia sáng đi qua điểm (0; 10) và bị phản xạ sang tiêu điểm còn lại? (tham khảo hình vẽ)
Câu 5:
Một kiến trúc sư quan tâm đến việc thiết kế một mái vòm mỏng có hình dạng của hình Hyperbolic parabolid như Hình 1. Hỏi điểm thuộc Hyperbol nằm cao hơn đỉnh 6 m ở bên phải cách đỉnh bao xa (làm tròn tới hai chữ số thập phân)?
Câu 6:
Một vụ nổ được hai micro M1 và M2 cách nhau 2 dặm ghi lại (1 dặm bằng 5 280 feet). Micro M1 nhận được âm thanh trước 4 giây so với micro M2. Giả sử âm thanh di chuyển với tốc độ 1 100 feet/giây. Tập tất cả các điểm P xảy ra vụ nổ thỏa mãn các điều kiện trên là một hypebol có phương trình dạng , với hai micro M1 và M2 là các tiêu điểm. Khi đó a + b bằng bao nhiêu? (làm tròn đến chữ số hàng đơn vị)
75 câu trắc nghiệm Vectơ nâng cao (P1)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
28 câu Trắc nghiệm Mệnh đề có đáp án
80 câu trắc nghiệm Vectơ cơ bản (P1)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
5 câu Trắc nghiệm Phương sai và độ lệch chuẩn có đáp án (Thông hiểu)
50 câu trắc nghiệm Thống kê nâng cao (P1)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
về câu hỏi!