Câu hỏi:
29/01/2024 398Cho nửa đường tròn (O). Đường kính AB = 6 cm. Kẻ các tiếp tuyến Ax, By cùng phía đối với nửa đường tròn đối với AB. Gọi C là một điểm thuộc tia Ax, kẻ tiếp tuyến CE với nửa đường tròn (E là tiếp điểm), CE cắt By tại D.
a) Chứng minh \[\widehat {COD} = 90^\circ \].
b) Chứng minh AEB và COD đồng dạng.
c) Gọi I là trung điểm của CD. Vẽ đường tròn (I) bán kính IC. Chứng minh rằng AB là tiếp tuyến của (I).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Ta có: \[\widehat {AOI} + \widehat {BOI} = 180^\circ \] (2 góc kề bù)
OC là tia phân giác \[\widehat {AOI}\](tính chất 2 tiếp tuyến cắt nhau)
OD là tia phân giác \[\widehat {BOI}\](tính chất 2 tiếp tuyến cắt nhau)
Suy ra: \[\widehat {ECO} = \widehat {OCA};\widehat {EDO} = \widehat {ODB}\]
Xét tam giác ACO và tam giác CEO có:
Chung CO
\[\widehat {ECO} = \widehat {OCA}\]
AC = CE (tính chất hai tiếp tuyến cắt nhau)
Nên: ∆ACO = ∆ECO (c.g.c)
⇒ \[\widehat {COA} = \widehat {COE}\]
Chứng minh tương tự, ta có: ∆DOE = ∆DOB (c.g.c)
⇒ \[\widehat {DOE} = \widehat {DOB}\]
Mà: \[\widehat {DOE} + \widehat {DOB} + \widehat {COA} + \widehat {COE} = 180^\circ \]
⇒ \[2\left( {\widehat {DOE} + \widehat {COE}} \right) = 180^\circ \]
Hay \[\widehat {DOE} + \widehat {COE} = 90^\circ \], tức \[\widehat {DOC} = 90^\circ \]
b) Ta có: \[\widehat {AEB} = \frac{1}{2}\widehat {CEO} + \frac{1}{2}\widehat {DEO} = \frac{1}{2}\widehat {DEC} = 90^\circ \]
\[\widehat {CDO} = \widehat {EBA}\](cùng chắn cung OE)
Xét ∆AEB và ∆COD có:
\[\widehat {CDO} = \widehat {EBA}\]
\[\widehat {COD} = \widehat {AEB} = 90^\circ \]
Suy ra: ∆AEB ~ ∆COD (g.g)
c) I là trung điểm của CD, kẻ IO
Ta có: DB ⊥ AB
AC ⊥ AB
⇒ DB // AC
⇒ CDBA là hình thang
⇒ OI là đường trung bình do nối 2 cạnh bên của hình thang
⇒ OI // AC
Mà AC ⊥ AB nên OI ⊥ AB
Vậy AB là tiếp tuyến của (I;IC)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác nhọn ABC, AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC. Trên tia đối của MH lấy điểm K sao cho MH = MK.
a, Chứng minh: BHCK là hình bình hành.
b, Chứng minh: BK vuông góc AB.
c, Chứng minh: tâm giác MEF cân.
d, CQ vuông góc BK tại Q. Chứng minh: EF vuông góc EQ.
Câu 2:
Bánh xe đạp có bán kính 50cm (kể cả lốp). Một người quay bánh xe 5 vòng quanh trục thì quãng đường đi được là bao nhiêu?
Câu 3:
Biết đồ thị hàm số y = ax2 + bx + c đi qua điểm A(2; 1) và có đỉnh I(1; –1). Tính giá trị biểu thức T = a3 + b2 – 2c.
Câu 4:
Cho tam giác ABC có A(1; 2), B (–3; –1), và C (3; –4). Tìm điều kiện của tham số m để điểm M\(\left( {m;\frac{{m - 5}}{3}} \right)\) nằm bên trong tam giác ABC.
Câu 5:
Chứng minh với mọi tam giác ABC ta có:
cos2A + cos2B + cos2C = –1 – 4cosA.cosB.cosC.
Câu 6:
Một bạn học sinh thả diều ngoài đồng, cho biết đoạn dây diều từ tay bạn đến diều dài 130m và bạn đứng cách nơi diều được thả lên theo phương thẳng đứng là 50m. Tính độ cao của con diều so với mặt đất, biết tay bạn học sinh cách mặt đất 1,5m.
Câu 7:
Cho hình thang cân ABCD (AD // BC). Biết AB = 12cm, AC = 16cm, BC = 20 cm. Chứng minh 4 điểm A, B, C, D cùng thuộc một đường tròn. Tính bán kính của đường tròn đó.
về câu hỏi!