Cho nửa đường tròn (O). Đường kính AB = 6 cm. Kẻ các tiếp tuyến Ax, By cùng phía đối với nửa đường tròn đối với AB. Gọi C là một điểm thuộc tia Ax, kẻ tiếp tuyến CE với nửa đường tròn (E là tiếp điểm), CE cắt By tại D.
a) Chứng minh \[\widehat {COD} = 90^\circ \].
b) Chứng minh AEB và COD đồng dạng.
c) Gọi I là trung điểm của CD. Vẽ đường tròn (I) bán kính IC. Chứng minh rằng AB là tiếp tuyến của (I).
Cho nửa đường tròn (O). Đường kính AB = 6 cm. Kẻ các tiếp tuyến Ax, By cùng phía đối với nửa đường tròn đối với AB. Gọi C là một điểm thuộc tia Ax, kẻ tiếp tuyến CE với nửa đường tròn (E là tiếp điểm), CE cắt By tại D.
a) Chứng minh \[\widehat {COD} = 90^\circ \].
b) Chứng minh AEB và COD đồng dạng.
c) Gọi I là trung điểm của CD. Vẽ đường tròn (I) bán kính IC. Chứng minh rằng AB là tiếp tuyến của (I).
Quảng cáo
Trả lời:

a) Ta có: \[\widehat {AOI} + \widehat {BOI} = 180^\circ \] (2 góc kề bù)
OC là tia phân giác \[\widehat {AOI}\](tính chất 2 tiếp tuyến cắt nhau)
OD là tia phân giác \[\widehat {BOI}\](tính chất 2 tiếp tuyến cắt nhau)
Suy ra: \[\widehat {ECO} = \widehat {OCA};\widehat {EDO} = \widehat {ODB}\]
Xét tam giác ACO và tam giác CEO có:
Chung CO
\[\widehat {ECO} = \widehat {OCA}\]
AC = CE (tính chất hai tiếp tuyến cắt nhau)
Nên: ∆ACO = ∆ECO (c.g.c)
⇒ \[\widehat {COA} = \widehat {COE}\]
Chứng minh tương tự, ta có: ∆DOE = ∆DOB (c.g.c)
⇒ \[\widehat {DOE} = \widehat {DOB}\]
Mà: \[\widehat {DOE} + \widehat {DOB} + \widehat {COA} + \widehat {COE} = 180^\circ \]
⇒ \[2\left( {\widehat {DOE} + \widehat {COE}} \right) = 180^\circ \]
Hay \[\widehat {DOE} + \widehat {COE} = 90^\circ \], tức \[\widehat {DOC} = 90^\circ \]
b) Ta có: \[\widehat {AEB} = \frac{1}{2}\widehat {CEO} + \frac{1}{2}\widehat {DEO} = \frac{1}{2}\widehat {DEC} = 90^\circ \]
\[\widehat {CDO} = \widehat {EBA}\](cùng chắn cung OE)
Xét ∆AEB và ∆COD có:
\[\widehat {CDO} = \widehat {EBA}\]
\[\widehat {COD} = \widehat {AEB} = 90^\circ \]
Suy ra: ∆AEB ~ ∆COD (g.g)
c) I là trung điểm của CD, kẻ IO
Ta có: DB ⊥ AB
AC ⊥ AB
⇒ DB // AC
⇒ CDBA là hình thang
⇒ OI là đường trung bình do nối 2 cạnh bên của hình thang
⇒ OI // AC
Mà AC ⊥ AB nên OI ⊥ AB
Vậy AB là tiếp tuyến của (I;IC)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì đồ thị hàm số y = ax2 + bx + c đi qua điểm A(2; 1) và có đỉnh I(1; –1) nên ta có hệ:
\(\left\{ \begin{array}{l}1 = 4a + 2b + c\\ - \frac{b}{{2a}} = 1\\a + b + c = - 1\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}4a + 2b + c = 1\\ - b = 2a\\a + b + c = - 1\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l} - 2b + 2b + c = 1\\ - 2b = 4a\\a + b + c = - 1\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}c = 1\\ - 2b = 4a\\a + b + 1 = - 1\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}c = 1\\4a + 2b = 0\\a + b = - 2\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}c = 1\\a = 2\\b = - 4\end{array} \right.\)
Khi đó T = a3 + b2 – 2c = 23 + (–4)2 – 2.1 = 8 + 16 – 2 = 22.
Lời giải

a) Xét tứ giác BHCK có:
M là trung điểm của BC (giả thiết).
M là trung điểm của HK (MH = MK).
⇒ BHCK là hình bình hành (dấu hiệu nhận biết).
b) BHCK là hình bình hành (chứng minh trên).
⇒ BK // HC mà HC ⊥ AB (đường cao)
⇒ AB ⊥ BK (từ vuông góc đến song song đảo).
c) M là trung điểm của BC (giả thiết)
⇒ ME là đường trung tuyến của ΔBCE
Mà ΔBCE vuông tại E ⇒ ME = \(\frac{1}{2}BC\)
M là trung điểm của BC (giả thiết).
⇒ MF là đường trung tuyến của ΔBCF
Mà ΔBCF vuông tại F⇒ MF = \(\frac{1}{2}BC\) = ME
⇒ΔMEF cân (hai cạnh bên bằng nhau).
d) Xét tứ giác BFCQ có:
\(\widehat {BFC} = 90^\circ \)(CF ⊥ AB)
\(\widehat {FBQ} = 90^\circ \)(BK ⊥ AB)
\(\widehat {BQC} = 90^\circ \)(CQ ⊥ BK)
⇒ BFCQ là hình chữ nhật
⇒ BC = FQ
⇒ M là trung điểm FQ
⇒ ME là trung tuyến của tam giác EFQ
Suy ra: ME = \(\frac{1}{2}BC\)= \(\frac{1}{2}PQ\)
⇒ Tam giác EFQ vuông tại E
Vậy EF vuông góc EQ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.