Câu hỏi:
13/07/2024 784
Cho tam giác ABC vuông tại A, M là trung điểm của BC. D, E lần lượt là hình chiếu của M trên AB và AC.
a) Tứ giác ADME là hình gì, tại sao?
b) Chứng minh DE = \(\frac{1}{2}BC\).
c) Gọi P là trung điểm của BM, Q là trung điểm của MC, chứng minh tứ giác DPQE là hình bình hành. Từ đó chứng minh: tâm đối xứng của hình bình hành DPQE nằm trên đoạn AM.
d) Tam giác vuông ABC ban đầu cần thêm điều kiện gì để hình bình hành DPQE là hình chữ nhật?
Cho tam giác ABC vuông tại A, M là trung điểm của BC. D, E lần lượt là hình chiếu của M trên AB và AC.
a) Tứ giác ADME là hình gì, tại sao?
b) Chứng minh DE = \(\frac{1}{2}BC\).
c) Gọi P là trung điểm của BM, Q là trung điểm của MC, chứng minh tứ giác DPQE là hình bình hành. Từ đó chứng minh: tâm đối xứng của hình bình hành DPQE nằm trên đoạn AM.
d) Tam giác vuông ABC ban đầu cần thêm điều kiện gì để hình bình hành DPQE là hình chữ nhật?
Quảng cáo
Trả lời:

a) Ta có D, E là hình chiếu của M trên AB, AC
Nên DM ⊥ AB và ME ⊥ AC, hay \(\widehat {ADM} = \widehat {AEM} = 90^\circ \)
Xét tứ giác ADME có \(\widehat {DAE} = \widehat {ADM} = \widehat {AEM} = 90^\circ \)
Suy ra ADME là hình chữ nhật.
b) Xét ΔABC vuông tại A có M là trung điểm BC
Suy ra AM = \(\frac{1}{2}BC\)
Vì ADME là hình chữ nhật có AM, DE là hai đường chéo, suy ra AM = DE
Mà AM = \(\frac{1}{2}BC\)
Do đó DE = \(\frac{1}{2}BC\).
c) Ta có AD ⊥ AC và ME ⊥ AC, suy ra AD // ME
Mà M là trung điểm của BC
Suy ra E là trung điểm của AC
Xét tam giác AMC có E, Q lần lượt là trung điểm của AC, MC
Suy ra QE là đường trung bình
Do đó QE // AM, QE =\(\frac{1}{2}AM\)(1)
Ta có DM ⊥ AB và AB ⊥ AC
Suy ra DM // AC
Mà M là trung điểm của BC
Suy ra D là trung điểm của AB
Xét ΔBAM có D, P lần lượt là trung điểm của AB và BM
Suy ra DP là đường trung bình của ΔBAM
Do đó DP // AM và DP = \(\frac{1}{2}AM\) (2)
Từ (1) và (2) suy ra DP // EQ, DP = EQ
Do đó DPQE là hình bình hành.
Gọi O là tâm đối xứng của DPQE (là giao điểm 2 đường chéo)
Ta có P, Q lần lượt là trung điểm của BM, MC và M là trung điểm BC
Suy ra M là trung điểm PQ
Xét hình bình hành DPQE có AM // DP và M là trung điểm PQ
Suy ra AM là đường trung bình của DPQE
Do đó AM đi qua trung điểm DE, gọi điểm đó là F
Từ đó AM là trục đối xứng của DPQE tức là đi qua O
Vậy tâm đối xứng của hình bình hành DPQE nằm trên đoạn AM.
d) Để hình bình hành DPQE là hình chữ nhật thì \(\widehat {APQ} = \widehat {PQE} = \widehat {QED} = \widehat {EDP} = 90^\circ \)
Ta xét ΔBAM nếu DP ⊥ BM thì AM ⊥ BM
Xét ΔABC có AM vừa là đường trung tuyến vừa là đường cao
Suy ra ΔABC vuông cân tại A
Vậy để hình bình hành DPQE là hình chữ nhật thì tam giác vuông ΔABC cần thêm điều kiện cân tại A.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì đồ thị hàm số y = ax2 + bx + c đi qua điểm A(2; 1) và có đỉnh I(1; –1) nên ta có hệ:
\(\left\{ \begin{array}{l}1 = 4a + 2b + c\\ - \frac{b}{{2a}} = 1\\a + b + c = - 1\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}4a + 2b + c = 1\\ - b = 2a\\a + b + c = - 1\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l} - 2b + 2b + c = 1\\ - 2b = 4a\\a + b + c = - 1\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}c = 1\\ - 2b = 4a\\a + b + 1 = - 1\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}c = 1\\4a + 2b = 0\\a + b = - 2\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}c = 1\\a = 2\\b = - 4\end{array} \right.\)
Khi đó T = a3 + b2 – 2c = 23 + (–4)2 – 2.1 = 8 + 16 – 2 = 22.
Lời giải

a) Xét tứ giác BHCK có:
M là trung điểm của BC (giả thiết).
M là trung điểm của HK (MH = MK).
⇒ BHCK là hình bình hành (dấu hiệu nhận biết).
b) BHCK là hình bình hành (chứng minh trên).
⇒ BK // HC mà HC ⊥ AB (đường cao)
⇒ AB ⊥ BK (từ vuông góc đến song song đảo).
c) M là trung điểm của BC (giả thiết)
⇒ ME là đường trung tuyến của ΔBCE
Mà ΔBCE vuông tại E ⇒ ME = \(\frac{1}{2}BC\)
M là trung điểm của BC (giả thiết).
⇒ MF là đường trung tuyến của ΔBCF
Mà ΔBCF vuông tại F⇒ MF = \(\frac{1}{2}BC\) = ME
⇒ΔMEF cân (hai cạnh bên bằng nhau).
d) Xét tứ giác BFCQ có:
\(\widehat {BFC} = 90^\circ \)(CF ⊥ AB)
\(\widehat {FBQ} = 90^\circ \)(BK ⊥ AB)
\(\widehat {BQC} = 90^\circ \)(CQ ⊥ BK)
⇒ BFCQ là hình chữ nhật
⇒ BC = FQ
⇒ M là trung điểm FQ
⇒ ME là trung tuyến của tam giác EFQ
Suy ra: ME = \(\frac{1}{2}BC\)= \(\frac{1}{2}PQ\)
⇒ Tam giác EFQ vuông tại E
Vậy EF vuông góc EQ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.