Câu hỏi:

13/07/2024 732

Cho tam giác ABC vuông tại A, M là trung điểm của BC. D, E lần lượt là hình chiếu của M trên AB và AC.

a) Tứ giác ADME là hình gì, tại sao?

b) Chứng minh DE = \(\frac{1}{2}BC\).

c) Gọi P là trung điểm của BM, Q là trung điểm của MC, chứng minh tứ giác DPQE là hình bình hành. Từ đó chứng minh: tâm đối xứng của hình bình hành DPQE nằm trên đoạn AM.

d) Tam giác vuông ABC ban đầu cần thêm điều kiện gì để hình bình hành DPQE là hình chữ nhật?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC vuông tại A, M là trung điểm của BC. D, E  (ảnh 1)

a) Ta có D, E là hình chiếu của M trên AB, AC

Nên DM  AB và ME  AC, hay \(\widehat {ADM} = \widehat {AEM} = 90^\circ \)

Xét tứ giác ADME có \(\widehat {DAE} = \widehat {ADM} = \widehat {AEM} = 90^\circ \)

Suy ra ADME là hình chữ nhật.

b) Xét ΔABC vuông tại A có M là trung điểm BC

Suy ra AM = \(\frac{1}{2}BC\)

Vì ADME là hình chữ nhật có AM, DE là hai đường chéo, suy ra AM = DE

Mà AM = \(\frac{1}{2}BC\)

Do đó DE = \(\frac{1}{2}BC\).

c) Ta có AD  AC và ME  AC, suy ra AD // ME

Mà M là trung điểm của BC

Suy ra E là trung điểm của AC

Xét tam giác AMC có E, Q lần lượt là trung điểm của AC, MC

Suy ra QE là đường trung bình

Do đó QE // AM, QE =\(\frac{1}{2}AM\)(1)

Ta có DM  AB và AB  AC

Suy ra DM // AC

Mà M là trung điểm của BC

Suy ra D là trung điểm của AB

Xét ΔBAM có D, P lần lượt là trung điểm của AB và BM

Suy ra DP là đường trung bình của ΔBAM

Do đó DP // AM và DP = \(\frac{1}{2}AM\) (2)

Từ (1) và (2) suy ra DP // EQ, DP = EQ

Do đó DPQE là hình bình hành.

Gọi O là tâm đối xứng của DPQE (là giao điểm 2 đường chéo)

Ta có P, Q lần lượt là trung điểm của BM, MC và M là trung điểm BC

Suy ra M là trung điểm PQ

Xét hình bình hành DPQE có AM // DP và M là trung điểm PQ

Suy ra AM là đường trung bình của DPQE

Do đó AM đi qua trung điểm DE, gọi điểm đó là F

Từ đó AM là trục đối xứng của DPQE tức là đi qua O

Vậy tâm đối xứng của hình bình hành DPQE nằm trên đoạn AM.

d) Để hình bình hành DPQE là hình chữ nhật thì \(\widehat {APQ} = \widehat {PQE} = \widehat {QED} = \widehat {EDP} = 90^\circ \)

Ta xét ΔBAM nếu DP  BM thì AM  BM

Xét ΔABC có AM vừa là đường trung tuyến vừa là đường cao

Suy ra ΔABC vuông cân tại A

Vậy để hình bình hành DPQE là hình chữ nhật thì tam giác vuông ΔABC cần thêm điều kiện cân tại A.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Biết đồ thị hàm số y = ax2 + bx + c đi qua điểm A(2; 1) và có đỉnh I(1; –1). Tính giá trị biểu thức T = a3 + b2 – 2c.

Xem đáp án » 13/07/2024 29,194

Câu 2:

Cho tam giác nhọn ABC, AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC. Trên tia đối của MH lấy điểm K sao cho MH = MK.

a, Chứng minh: BHCK là hình bình hành.

b, Chứng minh: BK vuông góc AB.

c, Chứng minh: tâm giác MEF cân.

d, CQ vuông góc BK tại Q. Chứng minh: EF vuông góc EQ.

Xem đáp án » 13/07/2024 26,222

Câu 3:

Bánh xe đạp có bán kính 50cm (kể cả lốp). Một người quay bánh xe 5 vòng quanh trục thì quãng đường đi được là bao nhiêu?

Xem đáp án » 13/07/2024 14,220

Câu 4:

Cho tam giác ABC có A(1; 2), B (–3; –1), và C (3; –4). Tìm điều kiện của tham số m để điểm M\(\left( {m;\frac{{m - 5}}{3}} \right)\) nằm bên trong tam giác ABC.

Xem đáp án » 13/07/2024 10,977

Câu 5:

Một bạn học sinh thả diều ngoài đồng, cho biết đoạn dây diều từ tay bạn đến diều dài 130m và bạn đứng cách nơi diều được thả lên theo phương thẳng đứng là 50m. Tính độ cao của con diều so với mặt đất, biết tay bạn học sinh cách mặt đất 1,5m.

Xem đáp án » 13/07/2024 9,596

Câu 6:

Cho phương trình: x2 – 2mx + m2 – 4 = 0.

a) Chứng minh rằng phương trình luôn có 2 nghiệm với mọi giá trị của m.

b) Tìm m để phương trình có 2 nghiệm phân biệt x1; x2 sao cho 3x1 + 2x2 = 7.

Xem đáp án » 13/07/2024 7,427

Câu 7:

Cho hình thang cân ABCD (AD // BC). Biết AB = 12cm, AC = 16cm, BC = 20 cm. Chứng minh 4 điểm A, B, C, D cùng thuộc một đường tròn. Tính bán kính của đường tròn đó.

Xem đáp án » 13/07/2024 6,606
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua