Có 7 quả cam, chia đều cho 10 người. Làm thế nào để chia được mà không phải cắt bất kì quả cam nào thành 10 phần bằng nhau?
Có 7 quả cam, chia đều cho 10 người. Làm thế nào để chia được mà không phải cắt bất kì quả cam nào thành 10 phần bằng nhau?
Câu hỏi trong đề: 7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án !!
Quảng cáo
Trả lời:
Có 7 quả cam chia cho 10 người thì mỗi người sẽ được \(\frac{7}{{10}}\) quả cam.
Mà: \(\frac{7}{{10}} = \frac{1}{2} + \frac{1}{5}\)
Nên mỗi người sẽ được \(\frac{1}{2}\) và \(\frac{1}{5}\) quả cam.
Vì vậy để không phải cắt bất kì quả cam nào thành phần bằng nhau thì ta phải:
+ Lấy 5 quả, mỗi quả chia thành 2 phần bằng nhau thì ta có được 10 phần.
+ Lấy 2 quả, mỗi quả chia thành 5 phần thì cũng đủ 10 phần cho mọi người.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì đồ thị hàm số y = ax2 + bx + c đi qua điểm A(2; 1) và có đỉnh I(1; –1) nên ta có hệ:
\(\left\{ \begin{array}{l}1 = 4a + 2b + c\\ - \frac{b}{{2a}} = 1\\a + b + c = - 1\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}4a + 2b + c = 1\\ - b = 2a\\a + b + c = - 1\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l} - 2b + 2b + c = 1\\ - 2b = 4a\\a + b + c = - 1\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}c = 1\\ - 2b = 4a\\a + b + 1 = - 1\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}c = 1\\4a + 2b = 0\\a + b = - 2\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}c = 1\\a = 2\\b = - 4\end{array} \right.\)
Khi đó T = a3 + b2 – 2c = 23 + (–4)2 – 2.1 = 8 + 16 – 2 = 22.
Lời giải

a) Xét tứ giác BHCK có:
M là trung điểm của BC (giả thiết).
M là trung điểm của HK (MH = MK).
⇒ BHCK là hình bình hành (dấu hiệu nhận biết).
b) BHCK là hình bình hành (chứng minh trên).
⇒ BK // HC mà HC ⊥ AB (đường cao)
⇒ AB ⊥ BK (từ vuông góc đến song song đảo).
c) M là trung điểm của BC (giả thiết)
⇒ ME là đường trung tuyến của ΔBCE
Mà ΔBCE vuông tại E ⇒ ME = \(\frac{1}{2}BC\)
M là trung điểm của BC (giả thiết).
⇒ MF là đường trung tuyến của ΔBCF
Mà ΔBCF vuông tại F⇒ MF = \(\frac{1}{2}BC\) = ME
⇒ΔMEF cân (hai cạnh bên bằng nhau).
d) Xét tứ giác BFCQ có:
\(\widehat {BFC} = 90^\circ \)(CF ⊥ AB)
\(\widehat {FBQ} = 90^\circ \)(BK ⊥ AB)
\(\widehat {BQC} = 90^\circ \)(CQ ⊥ BK)
⇒ BFCQ là hình chữ nhật
⇒ BC = FQ
⇒ M là trung điểm FQ
⇒ ME là trung tuyến của tam giác EFQ
Suy ra: ME = \(\frac{1}{2}BC\)= \(\frac{1}{2}PQ\)
⇒ Tam giác EFQ vuông tại E
Vậy EF vuông góc EQ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.