Câu hỏi:

13/07/2024 2,584 Lưu

Cho đường tròn (O) đường kính AB. Đường thẳng d tiếp xúc với (O) tại A. Gọi I là một điểm cố định trên đoạn thẳng AB. Gọi DE là dây cung thay đổi của (O) luôn đi qua I. Gọi BD, BE cắt d lần lượt tại M, N.

1) Chứng minh rằng tứ giác DENM là tứ giác nội tiếp.

2) Chứng minh rằng tích AM. AN không đổi.

3) Chứng minh rằng tâm đường tròn ngoại tiếp tứ giác DENM thuộc một đường thẳng cố định.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho đường tròn (O) đường kính AB. Đường thẳng d tiếp xúc với (ảnh 1)

1) Ta có: AB là đường kính của (O) nên AD BM, AE EB

Mà AB MN

Nên BD.BM = BA2 = BE. BN

\(\frac{{BD}}{{BN}} = \frac{{BE}}{{BM}}\)

\(\widehat {DBE} = \widehat {MBN}\)

∆BDE ∆BNM (c.g.c.)

\(\widehat {BDE} = \widehat {BNM}\)

MNED nội tiếp

2) Vẽ đường tròn ngoại tiếp ΔBMN, (BMN) ∩ AB = P

ΔBEI ΔBPN(g.g)

\(\frac{{BE}}{{BP}} = \frac{{BI}}{{BN}}\)

BI.BP = BE.BN = BA2

BP = \(\frac{{B{A^2}}}{{BI}}\) P cố định

\(\widehat {PAN} = \widehat {MAB},\widehat {APN} = \widehat {BPN} = \widehat {BMN} = \widehat {BMA}\)

ΔABM ΔANP(g.g)

\(\frac{{AM}}{{AP}} = \frac{{AB}}{{AN}}\)

AM.AN = AB. AP không đổi

3.Vẽ đường tròn ngoại tiếp DMNE, (DMNE) ∩ AB = C, F (như hình vẽ)

Chứng minh tương tự câu 2 có AF.AC = AM.AN AF.AC = AP.AB

Lại có BCF, BDM là cát tuyến tại B với (DMNE)

BC.BF = BD.BM = BA2

\(\left\{ \begin{array}{l}BC.BF = B{A^2}\\AF.AC = AP.AB\end{array} \right.\)

\(\left\{ \begin{array}{l}\left( {AB - AC} \right)\left( {AB + AF} \right) = B{A^2}\\AF.AC = AP.AB\end{array} \right.\)

\(\left\{ \begin{array}{l}A{B^2} + AB\left( {AF - AC} \right) - AF.AC = B{A^2}\\AF.AC = AP.AB\end{array} \right.\)

\(\left\{ \begin{array}{l}AB\left( {AF - AC} \right) = AF.AC\\AF.AC = AP.AB\end{array} \right.\)

\(\left\{ \begin{array}{l}AB\left( {AF - AC} \right) = AP.AB\\AF.AC = AP.AB\end{array} \right.\)

\(\left\{ \begin{array}{l}AF - AC = AP\\AF.AC = AP.AB\end{array} \right.\)

\(\left\{ \begin{array}{l}AF = AC + AP\\AF.AC = AP.AB\end{array} \right.\)

\(\left\{ \begin{array}{l}AF = AC + AP\\A{C^2} + AC.AP - AP.AB = 0\end{array} \right.\) C cố định

C, F cố định

Tâm (DENM) thuộc trung trực của CF cố định.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì đồ thị hàm số y = ax2 + bx + c đi qua điểm A(2; 1) và có đỉnh I(1; –1) nên ta có hệ:

\(\left\{ \begin{array}{l}1 = 4a + 2b + c\\ - \frac{b}{{2a}} = 1\\a + b + c = - 1\end{array} \right.\)

\(\left\{ \begin{array}{l}4a + 2b + c = 1\\ - b = 2a\\a + b + c = - 1\end{array} \right.\)

\(\left\{ \begin{array}{l} - 2b + 2b + c = 1\\ - 2b = 4a\\a + b + c = - 1\end{array} \right.\)

\(\left\{ \begin{array}{l}c = 1\\ - 2b = 4a\\a + b + 1 = - 1\end{array} \right.\)

\(\left\{ \begin{array}{l}c = 1\\4a + 2b = 0\\a + b = - 2\end{array} \right.\)

\(\left\{ \begin{array}{l}c = 1\\a = 2\\b = - 4\end{array} \right.\)

Khi đó T = a3 + b2 – 2c = 23 + (–4)2 – 2.1 = 8 + 16 – 2 = 22.

Lời giải

Cho tam giác nhọn ABC, AB < AC. Các đường cao BE, CF cắt  (ảnh 1)

a) Xét tứ giác BHCK có:

M là trung điểm của BC (giả thiết).

M là trung điểm của HK (MH = MK).

BHCK là hình bình hành (dấu hiệu nhận biết).

b) BHCK là hình bình hành (chứng minh trên).

BK // HC mà HC AB (đường cao)

AB BK (từ vuông góc đến song song đảo).

c) M là trung điểm của BC (giả thiết)

ME là đường trung tuyến của ΔBCE
Mà ΔBCE vuông tại E
ME = \(\frac{1}{2}BC\)
M là trung điểm của BC (giả thiết).

MF là đường trung tuyến của ΔBCF
Mà ΔBCF vuông tại F
MF = \(\frac{1}{2}BC\) = ME
ΔMEF cân (hai cạnh bên bằng nhau).

d) Xét tứ giác BFCQ có:

\(\widehat {BFC} = 90^\circ \)(CF AB)

\(\widehat {FBQ} = 90^\circ \)(BK AB)

\(\widehat {BQC} = 90^\circ \)(CQ BK)

BFCQ là hình chữ nhật

BC = FQ

M là trung điểm FQ

ME là trung tuyến của tam giác EFQ

Suy ra: ME = \(\frac{1}{2}BC\)= \(\frac{1}{2}PQ\)

Tam giác EFQ vuông tại E

Vậy EF vuông góc EQ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP