Quảng cáo
Trả lời:
Giả sử p là số nguyên tố thỏa mãn 2p + 1 chia hết cho p.
Theo định lý Fermat, ta có: 2p ≡ 2 (mod p)
Suy ra: (2p – 2) ⋮ p
⇒ 3 = (2p + 1) – (2p – 2) ⋮ p
⇒ p = 3 (thỏa mãn)
Vậy số nguyên tố p cần tìm là 3.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì đồ thị hàm số y = ax2 + bx + c đi qua điểm A(2; 1) và có đỉnh I(1; –1) nên ta có hệ:
\(\left\{ \begin{array}{l}1 = 4a + 2b + c\\ - \frac{b}{{2a}} = 1\\a + b + c = - 1\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}4a + 2b + c = 1\\ - b = 2a\\a + b + c = - 1\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l} - 2b + 2b + c = 1\\ - 2b = 4a\\a + b + c = - 1\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}c = 1\\ - 2b = 4a\\a + b + 1 = - 1\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}c = 1\\4a + 2b = 0\\a + b = - 2\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}c = 1\\a = 2\\b = - 4\end{array} \right.\)
Khi đó T = a3 + b2 – 2c = 23 + (–4)2 – 2.1 = 8 + 16 – 2 = 22.
Lời giải

a) Xét tứ giác BHCK có:
M là trung điểm của BC (giả thiết).
M là trung điểm của HK (MH = MK).
⇒ BHCK là hình bình hành (dấu hiệu nhận biết).
b) BHCK là hình bình hành (chứng minh trên).
⇒ BK // HC mà HC ⊥ AB (đường cao)
⇒ AB ⊥ BK (từ vuông góc đến song song đảo).
c) M là trung điểm của BC (giả thiết)
⇒ ME là đường trung tuyến của ΔBCE
Mà ΔBCE vuông tại E ⇒ ME = \(\frac{1}{2}BC\)
M là trung điểm của BC (giả thiết).
⇒ MF là đường trung tuyến của ΔBCF
Mà ΔBCF vuông tại F⇒ MF = \(\frac{1}{2}BC\) = ME
⇒ΔMEF cân (hai cạnh bên bằng nhau).
d) Xét tứ giác BFCQ có:
\(\widehat {BFC} = 90^\circ \)(CF ⊥ AB)
\(\widehat {FBQ} = 90^\circ \)(BK ⊥ AB)
\(\widehat {BQC} = 90^\circ \)(CQ ⊥ BK)
⇒ BFCQ là hình chữ nhật
⇒ BC = FQ
⇒ M là trung điểm FQ
⇒ ME là trung tuyến của tam giác EFQ
Suy ra: ME = \(\frac{1}{2}BC\)= \(\frac{1}{2}PQ\)
⇒ Tam giác EFQ vuông tại E
Vậy EF vuông góc EQ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.