Câu hỏi:

13/07/2024 5,327

Bác Hòa uốn một sợi dây thép thành móc treo đồ có dạng hình thang cân với độ dài đáy bé bằng 40cm, đáy lớn bằng 50cm, cạnh bên bằng 15cm, móc treo dài 10cm. Hỏi bác Hòa cần bao nhiên mét dây thép?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chu vi phần có dạng hình thang cân:

40 + 50 + 2.15 = 120(cm)

Số mét dây thép cần dùng là:

120 + 10 = 130 (cm) = 1,3 (m)

Vậy cần dùng 1,3m dây thép.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì đồ thị hàm số y = ax2 + bx + c đi qua điểm A(2; 1) và có đỉnh I(1; –1) nên ta có hệ:

\(\left\{ \begin{array}{l}1 = 4a + 2b + c\\ - \frac{b}{{2a}} = 1\\a + b + c = - 1\end{array} \right.\)

\(\left\{ \begin{array}{l}4a + 2b + c = 1\\ - b = 2a\\a + b + c = - 1\end{array} \right.\)

\(\left\{ \begin{array}{l} - 2b + 2b + c = 1\\ - 2b = 4a\\a + b + c = - 1\end{array} \right.\)

\(\left\{ \begin{array}{l}c = 1\\ - 2b = 4a\\a + b + 1 = - 1\end{array} \right.\)

\(\left\{ \begin{array}{l}c = 1\\4a + 2b = 0\\a + b = - 2\end{array} \right.\)

\(\left\{ \begin{array}{l}c = 1\\a = 2\\b = - 4\end{array} \right.\)

Khi đó T = a3 + b2 – 2c = 23 + (–4)2 – 2.1 = 8 + 16 – 2 = 22.

Lời giải

Cho tam giác nhọn ABC, AB < AC. Các đường cao BE, CF cắt  (ảnh 1)

a) Xét tứ giác BHCK có:

M là trung điểm của BC (giả thiết).

M là trung điểm của HK (MH = MK).

BHCK là hình bình hành (dấu hiệu nhận biết).

b) BHCK là hình bình hành (chứng minh trên).

BK // HC mà HC AB (đường cao)

AB BK (từ vuông góc đến song song đảo).

c) M là trung điểm của BC (giả thiết)

ME là đường trung tuyến của ΔBCE
Mà ΔBCE vuông tại E
ME = \(\frac{1}{2}BC\)
M là trung điểm của BC (giả thiết).

MF là đường trung tuyến của ΔBCF
Mà ΔBCF vuông tại F
MF = \(\frac{1}{2}BC\) = ME
ΔMEF cân (hai cạnh bên bằng nhau).

d) Xét tứ giác BFCQ có:

\(\widehat {BFC} = 90^\circ \)(CF AB)

\(\widehat {FBQ} = 90^\circ \)(BK AB)

\(\widehat {BQC} = 90^\circ \)(CQ BK)

BFCQ là hình chữ nhật

BC = FQ

M là trung điểm FQ

ME là trung tuyến của tam giác EFQ

Suy ra: ME = \(\frac{1}{2}BC\)= \(\frac{1}{2}PQ\)

Tam giác EFQ vuông tại E

Vậy EF vuông góc EQ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay