Câu hỏi:

29/01/2024 1,469

Giải phương trình: tan2x + cot2x = 1 + \({\cos ^2}\left( {3x + \frac{\pi }{4}} \right)\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

ĐKXĐ: cosx ≠ 0; sinx ≠ 0

Xét VT = tan2x + cot2x = (tanx – cotx)2 + 2 ≥ 2

Lại có \({\cos ^2}\left( {3x + \frac{\pi }{4}} \right) \le 1,\forall x\)

\(1 + {\cos ^2}\left( {3x + \frac{\pi }{4}} \right) \le 2,\forall x\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{ \begin{array}{l}\tan x = \cot x\\{\cos ^2}\left( {3x + \frac{\pi }{4}} \right) = 1\end{array} \right.\) \(\left\{ \begin{array}{l}\tan x = \tan \left( {\frac{\pi }{2} - x} \right)\\\sin \left( {3x + \frac{\pi }{4}} \right) = 0\end{array} \right.\)

\(\left\{ \begin{array}{l}x = \frac{\pi }{2} - x + k\pi \\3x + \frac{\pi }{4} = k\pi \end{array} \right.\) \(\left\{ \begin{array}{l}x = \frac{\pi }{4} + \frac{{k\pi }}{2}\\x = - \frac{\pi }{{12}} + \frac{{k\pi }}{3}\end{array} \right.\) \(x = \frac{\pi }{4} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì đồ thị hàm số y = ax2 + bx + c đi qua điểm A(2; 1) và có đỉnh I(1; –1) nên ta có hệ:

\(\left\{ \begin{array}{l}1 = 4a + 2b + c\\ - \frac{b}{{2a}} = 1\\a + b + c = - 1\end{array} \right.\)

\(\left\{ \begin{array}{l}4a + 2b + c = 1\\ - b = 2a\\a + b + c = - 1\end{array} \right.\)

\(\left\{ \begin{array}{l} - 2b + 2b + c = 1\\ - 2b = 4a\\a + b + c = - 1\end{array} \right.\)

\(\left\{ \begin{array}{l}c = 1\\ - 2b = 4a\\a + b + 1 = - 1\end{array} \right.\)

\(\left\{ \begin{array}{l}c = 1\\4a + 2b = 0\\a + b = - 2\end{array} \right.\)

\(\left\{ \begin{array}{l}c = 1\\a = 2\\b = - 4\end{array} \right.\)

Khi đó T = a3 + b2 – 2c = 23 + (–4)2 – 2.1 = 8 + 16 – 2 = 22.

Lời giải

Cho tam giác nhọn ABC, AB < AC. Các đường cao BE, CF cắt  (ảnh 1)

a) Xét tứ giác BHCK có:

M là trung điểm của BC (giả thiết).

M là trung điểm của HK (MH = MK).

BHCK là hình bình hành (dấu hiệu nhận biết).

b) BHCK là hình bình hành (chứng minh trên).

BK // HC mà HC AB (đường cao)

AB BK (từ vuông góc đến song song đảo).

c) M là trung điểm của BC (giả thiết)

ME là đường trung tuyến của ΔBCE
Mà ΔBCE vuông tại E
ME = \(\frac{1}{2}BC\)
M là trung điểm của BC (giả thiết).

MF là đường trung tuyến của ΔBCF
Mà ΔBCF vuông tại F
MF = \(\frac{1}{2}BC\) = ME
ΔMEF cân (hai cạnh bên bằng nhau).

d) Xét tứ giác BFCQ có:

\(\widehat {BFC} = 90^\circ \)(CF AB)

\(\widehat {FBQ} = 90^\circ \)(BK AB)

\(\widehat {BQC} = 90^\circ \)(CQ BK)

BFCQ là hình chữ nhật

BC = FQ

M là trung điểm FQ

ME là trung tuyến của tam giác EFQ

Suy ra: ME = \(\frac{1}{2}BC\)= \(\frac{1}{2}PQ\)

Tam giác EFQ vuông tại E

Vậy EF vuông góc EQ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP