Một người bán một tấm vải được lãi \(\frac{1}{5}\) giá mua. Nếu người đó bán được cao giá hơn 40 000 đồng nữa thì người đó lãi \(\frac{1}{5}\) giá bán. Hỏi giá mua tấm vải là bao nhiêu?
Một người bán một tấm vải được lãi \(\frac{1}{5}\) giá mua. Nếu người đó bán được cao giá hơn 40 000 đồng nữa thì người đó lãi \(\frac{1}{5}\) giá bán. Hỏi giá mua tấm vải là bao nhiêu?
Quảng cáo
Trả lời:

Cách 1: Coi giá mua là 100% thì giá bán để lãi 20% so với giá mua tức là em bán 120% giá mua. Còn lãi 20% giá bán thì em lấy vốn mua vào
100 : (100 – 20) . 100 = 125% (giá mua)
40 000 đồng chính là:
125% – 100% = 5% (giá mua)
Anh tính ra giá mua giúp cô ấy được:
40 000 : 5 . 100 = 800 000 (đồng).
Và tính luôn giá chém khách tới bến:
800 000 : 4 . 5 = 1 000 000 (đồng).
Cách 2: Khi bán lãi 20% giá bán tức là giá mua so với giá bán chiếm số % là:
100% – 20% = 80% (giá bán)
Khi đó lãi so với giá mua chiếm số phần trăm
20% : 80% = 0,25 = 25% (giá mua)
So với lúc trước lãi tăng thêm số % so với giá mua
25% – 20% = 5%
Giá tiền mua tấm vải
40 000 : 5 . 100 = 800 000 (đồng)
Giá bán tấm vải ( trước khi tăng giá )
800 000 : 100 . (100 + 20) = 960 000 (đồng)
Giá bán tấm vải sau khi tăng giá
800 000 : 100 . (100 + 25) = 1 000 000 (đồng).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Xét tứ giác BHCK có:
M là trung điểm của BC (giả thiết).
M là trung điểm của HK (MH = MK).
⇒ BHCK là hình bình hành (dấu hiệu nhận biết).
b) BHCK là hình bình hành (chứng minh trên).
⇒ BK // HC mà HC ⊥ AB (đường cao)
⇒ AB ⊥ BK (từ vuông góc đến song song đảo).
c) M là trung điểm của BC (giả thiết)
⇒ ME là đường trung tuyến của ΔBCE
Mà ΔBCE vuông tại E ⇒ ME = \(\frac{1}{2}BC\)
M là trung điểm của BC (giả thiết).
⇒ MF là đường trung tuyến của ΔBCF
Mà ΔBCF vuông tại F⇒ MF = \(\frac{1}{2}BC\) = ME
⇒ΔMEF cân (hai cạnh bên bằng nhau).
d) Xét tứ giác BFCQ có:
\(\widehat {BFC} = 90^\circ \)(CF ⊥ AB)
\(\widehat {FBQ} = 90^\circ \)(BK ⊥ AB)
\(\widehat {BQC} = 90^\circ \)(CQ ⊥ BK)
⇒ BFCQ là hình chữ nhật
⇒ BC = FQ
⇒ M là trung điểm FQ
⇒ ME là trung tuyến của tam giác EFQ
Suy ra: ME = \(\frac{1}{2}BC\)= \(\frac{1}{2}PQ\)
⇒ Tam giác EFQ vuông tại E
Vậy EF vuông góc EQ.
Lời giải
Vì đồ thị hàm số y = ax2 + bx + c đi qua điểm A(2; 1) và có đỉnh I(1; –1) nên ta có hệ:
\(\left\{ \begin{array}{l}1 = 4a + 2b + c\\ - \frac{b}{{2a}} = 1\\a + b + c = - 1\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}4a + 2b + c = 1\\ - b = 2a\\a + b + c = - 1\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l} - 2b + 2b + c = 1\\ - 2b = 4a\\a + b + c = - 1\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}c = 1\\ - 2b = 4a\\a + b + 1 = - 1\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}c = 1\\4a + 2b = 0\\a + b = - 2\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}c = 1\\a = 2\\b = - 4\end{array} \right.\)
Khi đó T = a3 + b2 – 2c = 23 + (–4)2 – 2.1 = 8 + 16 – 2 = 22.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.