Câu hỏi:

13/07/2024 1,799

Cho tam giác ABC vuông tại A, đường cao AH, vẽ HE vuông góc AB, HF vuông góc AC. Gọi I là trung điểm BC.

a) Chứng minh EF = AH.

b) Chứng minh AI vuông góc EF.

c) Gọi M là trung điểm HB, N là trung điểm HC. Chứng minh EMNF là hình thang vuông.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC vuông tại A, đường cao AH, vẽ HE vuông góc AB (ảnh 1)

a) Ta có \(\widehat E = \widehat A = \widehat F = 90^\circ \) nên EAFH là hình chữ nhật

Suy ra EF = AH (hai đường chéo của một hình chữ nhật)

b) Tam giác ABC vuông tại A có trung tuyến AI

Suy ra AI = \(\frac{1}{2}BC\)= BI = IC

ΔIAB cân tại I nên \(\widehat {IAB} = \widehat {IBA}\)(1)

EAFH là hình chữ nhật suy ra EF = AH

Gọi O là giao điểm EF và AH

Suy ra EO = OF = OA = OH hay tam giác EOA cân tại O

Nên \(\widehat {OEA} = \widehat {OAE}\) (2)

Mà \(\widehat {IBA} + \widehat {OAE} = 90^\circ \)

Từ (1), (2) và (3) suy ra \(\widehat {IAE} + \widehat {OEA} = 90^\circ \) hay AI EF

c) Xét tam giác EBH vuông tại E có EM là trung tuyến ứng với cạnh huyền

  EM = MB = \(\frac{1}{2}BH\)

  ΔEMB cân tại M

  \(\widehat {MBE} = \widehat {MEB}\)

\(\widehat {MBE} + \widehat {ACB} = 90^\circ \)(do tam giác ABC vuông tại A)

\(\widehat {ACB} = \widehat {AEO}\)(=\(\widehat {AHO}\))

\(\widehat {BEM} + \widehat {AEO} = 90^\circ \)

\(\widehat {MEF} = 180^\circ - 90^\circ = 90^\circ \)

Suy ra: ME vuông góc với EF tại E

Chứng minh tương tự: NF vuông góc với EF tại F

Xét tứ giác MEFN có ME EF; NF EF

Suy ra: ME // NF

  MENF là hình thang

Đồng thời \(\widehat {MEF} = \widehat {EFN} = 90^\circ \)

MEFN là hình thang vuông tại E và F.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì đồ thị hàm số y = ax2 + bx + c đi qua điểm A(2; 1) và có đỉnh I(1; –1) nên ta có hệ:

\(\left\{ \begin{array}{l}1 = 4a + 2b + c\\ - \frac{b}{{2a}} = 1\\a + b + c = - 1\end{array} \right.\)

\(\left\{ \begin{array}{l}4a + 2b + c = 1\\ - b = 2a\\a + b + c = - 1\end{array} \right.\)

\(\left\{ \begin{array}{l} - 2b + 2b + c = 1\\ - 2b = 4a\\a + b + c = - 1\end{array} \right.\)

\(\left\{ \begin{array}{l}c = 1\\ - 2b = 4a\\a + b + 1 = - 1\end{array} \right.\)

\(\left\{ \begin{array}{l}c = 1\\4a + 2b = 0\\a + b = - 2\end{array} \right.\)

\(\left\{ \begin{array}{l}c = 1\\a = 2\\b = - 4\end{array} \right.\)

Khi đó T = a3 + b2 – 2c = 23 + (–4)2 – 2.1 = 8 + 16 – 2 = 22.

Lời giải

Cho tam giác nhọn ABC, AB < AC. Các đường cao BE, CF cắt  (ảnh 1)

a) Xét tứ giác BHCK có:

M là trung điểm của BC (giả thiết).

M là trung điểm của HK (MH = MK).

BHCK là hình bình hành (dấu hiệu nhận biết).

b) BHCK là hình bình hành (chứng minh trên).

BK // HC mà HC AB (đường cao)

AB BK (từ vuông góc đến song song đảo).

c) M là trung điểm của BC (giả thiết)

ME là đường trung tuyến của ΔBCE
Mà ΔBCE vuông tại E
ME = \(\frac{1}{2}BC\)
M là trung điểm của BC (giả thiết).

MF là đường trung tuyến của ΔBCF
Mà ΔBCF vuông tại F
MF = \(\frac{1}{2}BC\) = ME
ΔMEF cân (hai cạnh bên bằng nhau).

d) Xét tứ giác BFCQ có:

\(\widehat {BFC} = 90^\circ \)(CF AB)

\(\widehat {FBQ} = 90^\circ \)(BK AB)

\(\widehat {BQC} = 90^\circ \)(CQ BK)

BFCQ là hình chữ nhật

BC = FQ

M là trung điểm FQ

ME là trung tuyến của tam giác EFQ

Suy ra: ME = \(\frac{1}{2}BC\)= \(\frac{1}{2}PQ\)

Tam giác EFQ vuông tại E

Vậy EF vuông góc EQ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP