Câu hỏi:

13/07/2024 1,186 Lưu

Cho tam giác ABC vuông tại A, đường cao AH kẻ HE, HF lần lượt vuông góc với AB, AC.

a) Chứng minh \(\frac{{EB}}{{FC}} = {\left( {\frac{{AB}}{{AC}}} \right)^3}\).

b) Chứng minh BC.BE.CF = AH3.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC vuông tại A, đường cao AH kẻ HE, HF lần lượt (ảnh 1)

Áp dụng hệ thức lượng trong các tam giác vuông ABC, AHB, AHC ta có:

AB.AC = BC.AH \(BC = \frac{{AB.AC}}{{AH}}\)

* BH2 = AB.BE

AB2 = BH.BC AB4 = BH2 . BC2 = AB.BE.BC2

* CH2 = AC.CF

AC2 = CH.BC AC4 = CH2 . BC2 = AC.CF.BC2

Xét: \(\frac{{A{B^4}}}{{A{C^4}}} = \frac{{AB.BE.B{C^2}}}{{AC.CF.B{C^2}}} = \frac{{AB.BE}}{{AC.CF}}\)

Suy ra: \(\frac{{EB}}{{FC}} = {\left( {\frac{{AB}}{{AC}}} \right)^3}\)

Lại có: BH2 = AB.BE BE = \(\frac{{B{H^2}}}{{AB}}\)

CH2 = AC.CF CF = \(\frac{{C{H^2}}}{{AC}}\)

Khi đó: \(BE.CF = \frac{{B{H^2}}}{{AB}}.\frac{{C{H^2}}}{{AC}} = \frac{{A{H^4}}}{{AB.AC}}\)(Vì AH2 = BH.CH)

Vậy BC.BE.CF = \(\frac{{AB.AC}}{{AH}}.\frac{{A{H^4}}}{{AB.AC}} = A{H^3}\).2

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(\tan \left( {\alpha - \frac{\pi }{4}} \right) = \frac{{\tan \alpha - \tan \frac{\pi }{4}}}{{1 + \tan \alpha .\tan \frac{\pi }{4}}} = \frac{{2 - 1}}{{2 + 1}} = \frac{1}{3}\).

Lời giải

Tính được: 270° = \(\frac{{270}}{{180}}\pi = \frac{3}{2}\pi = \frac{3}{4}.2\pi \)

Vậy đu quay được góc 270° khi nó quay được \(\frac{3}{4}\) vòng

Ta có: đu quay quay được 1 vòng trong \(\frac{1}{3}\) phút

Vậy đu quay đu được \(\frac{3}{4}\) vòng trong: \(\frac{3}{4}.\frac{1}{3} = \frac{1}{4}\) phút.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP