Câu hỏi:
13/07/2024 928
Cho tam giác ABC, IG vuông góc với IC trong đó I là tâm đường tròn nội tiếp, G là trọng tâm. Chứng minh \(\frac{{a + b + c}}{3} = \frac{{2ab}}{{a + b}}\).
Cho tam giác ABC, IG vuông góc với IC trong đó I là tâm đường tròn nội tiếp, G là trọng tâm. Chứng minh \(\frac{{a + b + c}}{3} = \frac{{2ab}}{{a + b}}\).
Quảng cáo
Trả lời:

Ta chứng minh \(a\overrightarrow {IA} + b\overrightarrow {IB} + c\overrightarrow {IC} = \overrightarrow 0 \)
⇒ \(a\left( {\overrightarrow {IC} + \overrightarrow {CA} } \right) + b\left( {\overrightarrow {IC} + \overrightarrow {CB} } \right) + c\overrightarrow {IC} = \overrightarrow 0 \)
⇒ \(\overrightarrow {CI} = \frac{1}{{a + b + c}}\left( {a.\overrightarrow {CA} + b.\overrightarrow {CB} } \right)\)
⇒ \(\overrightarrow {GI} = \overrightarrow {CI} - \overrightarrow {CG} = \left( {\frac{a}{{a + b + c}} - \frac{1}{3}} \right)\overrightarrow {CA} + \left( {\frac{b}{{a + b + c}} - \frac{1}{3}} \right)\overrightarrow {CB} \)
Khi đó: ⇔ \(\left[ {\left( {2a - b - c} \right)\overrightarrow {CA} + \left( {2b - a - c} \right)\overrightarrow {CB} } \right]\left( {a\overrightarrow {CA} + b\overrightarrow {CB} } \right) = \overrightarrow 0 \)
⇔ \(\left( {ab + \overrightarrow {CA} .\overrightarrow {CB} } \right)\left[ {b\left( {2a - b - c} \right) + a\left( {2b - a - c} \right)} \right] = 0\)
Do \(\left( {ab + \overrightarrow {CA} .\overrightarrow {CB} } \right) = ab + ab\cos C = ab\left( {1 + \cos C} \right) > 0\)
Nên ta có: b(2a – b – c) + a(2b – a – c) = 0
⇔ b(3a – a – b – c) + a(3b – a – b – c) = 0
⇔ 6ab = (a + b)(a + b + c)
⇔ \(\frac{{a + b + c}}{3} = \frac{{2ab}}{{a + b}}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\(\tan \left( {\alpha - \frac{\pi }{4}} \right) = \frac{{\tan \alpha - \tan \frac{\pi }{4}}}{{1 + \tan \alpha .\tan \frac{\pi }{4}}} = \frac{{2 - 1}}{{2 + 1}} = \frac{1}{3}\).
Lời giải
Tính được: 270° = \(\frac{{270}}{{180}}\pi = \frac{3}{2}\pi = \frac{3}{4}.2\pi \)
Vậy đu quay được góc 270° khi nó quay được \(\frac{3}{4}\) vòng
Ta có: đu quay quay được 1 vòng trong \(\frac{1}{3}\) phút
Vậy đu quay đu được \(\frac{3}{4}\) vòng trong: \(\frac{3}{4}.\frac{1}{3} = \frac{1}{4}\) phút.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.