Câu hỏi:

13/07/2024 606

Cho tam giác ABC, IG vuông góc với IC trong đó I là tâm đường tròn nội tiếp, G là trọng tâm. Chứng minh \(\frac{{a + b + c}}{3} = \frac{{2ab}}{{a + b}}\).

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
o tam giác ABC, IG vuông góc với IC trong đó I là tâm đường tròn (ảnh 1)

Ta chứng minh \(a\overrightarrow {IA} + b\overrightarrow {IB} + c\overrightarrow {IC} = \overrightarrow 0 \)

\(a\left( {\overrightarrow {IC} + \overrightarrow {CA} } \right) + b\left( {\overrightarrow {IC} + \overrightarrow {CB} } \right) + c\overrightarrow {IC} = \overrightarrow 0 \)

\(\overrightarrow {CI} = \frac{1}{{a + b + c}}\left( {a.\overrightarrow {CA} + b.\overrightarrow {CB} } \right)\)

\(\overrightarrow {GI} = \overrightarrow {CI} - \overrightarrow {CG} = \left( {\frac{a}{{a + b + c}} - \frac{1}{3}} \right)\overrightarrow {CA} + \left( {\frac{b}{{a + b + c}} - \frac{1}{3}} \right)\overrightarrow {CB} \)

Khi đó: \(\left[ {\left( {2a - b - c} \right)\overrightarrow {CA} + \left( {2b - a - c} \right)\overrightarrow {CB} } \right]\left( {a\overrightarrow {CA} + b\overrightarrow {CB} } \right) = \overrightarrow 0 \)

\(\left( {ab + \overrightarrow {CA} .\overrightarrow {CB} } \right)\left[ {b\left( {2a - b - c} \right) + a\left( {2b - a - c} \right)} \right] = 0\)

Do \(\left( {ab + \overrightarrow {CA} .\overrightarrow {CB} } \right) = ab + ab\cos C = ab\left( {1 + \cos C} \right) > 0\)

Nên ta có: b(2a – b – c) + a(2b – a – c) = 0

b(3a – a – b – c) + a(3b – a – b – c) = 0

6ab = (a + b)(a + b + c)

\(\frac{{a + b + c}}{3} = \frac{{2ab}}{{a + b}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tanα = 2. Tính \(\tan \left( {\alpha - \frac{\pi }{4}} \right)\).

Xem đáp án » 13/07/2024 31,410

Câu 2:

Một đu quay ở công viên có bán kính bằng 10m. Tốc độ của đu quay là 3 vòng/phút. Hỏi mất bao lâu để đu quay quay được góc 270°?

Xem đáp án » 13/07/2024 25,203

Câu 3:

1 thùng rỗng nặng 1 yến. Khi đổ đầy nước thì thùng nước đó nặng 120kg. Hỏi một nửa thùng đó nặng bao nhiêu?

Xem đáp án » 13/07/2024 12,746

Câu 4:

Cho một cấp số nhân có công bội bằng 3 và số hạng đầu bằng 5. Biết số hạng chính giữa là 32805. Hỏi cấp số nhân đã cho có bao nhiêu số hạng?

Xem đáp án » 13/07/2024 7,798

Câu 5:

Khai triển hằng đẳng thức a4 + b4

Xem đáp án » 13/07/2024 6,030

Câu 6:

Cho hình trên biết AB // CD, CD // EF. Tính \(\widehat {ACD}\)\(\widehat {ACE}\).

Cho hình trên biết AB // CD, CD // EF. Tính \(\widehat {ACD}\) và \(\widehat {ACE}\).ho hình trên biết AB // CD, CD // EF. Tính góc ACD và góc ACE (ảnh 1)

Xem đáp án » 13/07/2024 5,580

Câu 7:

Cho tam giác ABC vuông tại A (AB > AC) có đường cao AH. Gọi AD là phân giác của HAB.

a) Tính cạnh AH, AC biết HB = 18cm, HC = 8cm.

b) Chứng minh tam giác ADC cân và HD.BC = BD.DC.

c) Gọi E, F lần lượt là hình chiếu của H trên AB và AC. Chứng minh

SAEF = SABC.(1 – cos2B).sin2C.

Xem đáp án » 13/07/2024 3,710

Bình luận


Bình luận