Câu hỏi:
13/07/2024 1,725
Cho hình bình hành ABCD có AB = 2AD; \(\widehat D = 70^\circ \). Vẽ BH vuông góc AD (H ∈ AD). Gọi M, N lần lượt là trung điểm cạnh CD, AB.
a) Chứng minh tứ giác ANMD là hình thoi.
b) Tính góc \(\widehat {HMC}\).
Cho hình bình hành ABCD có AB = 2AD; \(\widehat D = 70^\circ \). Vẽ BH vuông góc AD (H ∈ AD). Gọi M, N lần lượt là trung điểm cạnh CD, AB.
a) Chứng minh tứ giác ANMD là hình thoi.
b) Tính góc \(\widehat {HMC}\).
Quảng cáo
Trả lời:

Ta có:
AB // CD (tính chất hình bình hành)
N là trung điểm của AB nên AN = 1/2 AB
M là trung điểm của CD nên DM = 1/2 CD
Do AB = CD (tính chất hình bình hành) nên AN = DM
Do đó, AN // DM và AN = DM
Từ đó suy ra tứ giác ANMD là hình bình hành có hai cạnh kề bằng nhau, nên là hình thoi.
Ta có:
BH ⊥ AD (theo đề bài)
Gọi I là giao điểm của BH và MN
Ta có BI = HI (tính chất tam giác vuông cân)
Ta có MI = NI (vì M, N là trung điểm của CD, AB)
Do đó, BI = HI = MI = NI
Từ đó suy ra BH và MN giao nhau tại trung điểm I và vuông góc với nhau.
Vậy ta đã chứng minh được tứ giác ANMD là hình thoi.
b) Ta có: MN // DA và DA ⊥ BH
Suy ra: MN ⊥ BH và đi qua trung điểm của BH
Hay MN là đường trung trực của BH
⇒ \(\widehat {{M_1}} = \widehat {{M_2}}\)
Lại có: \(\widehat {{M_2}} = \widehat {{M_3}};\widehat {NMC} = \widehat {ADM} = 70^\circ \)
Suy ra: \(\widehat {{M_2}} = \widehat {{M_3}} = 70^\circ :2 = 35^\circ \)
Vậy: \[\widehat {HMC} = 3.35^\circ = 105^\circ \].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\(\tan \left( {\alpha - \frac{\pi }{4}} \right) = \frac{{\tan \alpha - \tan \frac{\pi }{4}}}{{1 + \tan \alpha .\tan \frac{\pi }{4}}} = \frac{{2 - 1}}{{2 + 1}} = \frac{1}{3}\).
Lời giải
Tính được: 270° = \(\frac{{270}}{{180}}\pi = \frac{3}{2}\pi = \frac{3}{4}.2\pi \)
Vậy đu quay được góc 270° khi nó quay được \(\frac{3}{4}\) vòng
Ta có: đu quay quay được 1 vòng trong \(\frac{1}{3}\) phút
Vậy đu quay đu được \(\frac{3}{4}\) vòng trong: \(\frac{3}{4}.\frac{1}{3} = \frac{1}{4}\) phút.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.