Câu hỏi:

13/07/2024 1,546

Cho các số thực không âm a, b, c thay đổi thỏa mãn a2 + b2 + c2 = 1. Tìm GTLN của biểu thức Q = \(\sqrt {a + b} + \sqrt {b + c} + \sqrt {c + a} \).

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Áp dụng bất đẳng thức Cô–si cho 2 số không âm, ta có:

a2 + b2 ≥ 2ab

b2 + c2 ≥ 2bc

a2 + c2 ≥ 2ac

Cộng vế ta được:

2(a2 + b2 + c2) ≥ 2(ab + bc + ca)

3(a2 + b2 + c2) ≥ 2(ab + bc + ca) + a2 + b2 + c2

3(a2 + b2 + c2) ≥ (a + b + c)2

Mà a2 + b2 + c2 = 1 nên (a + b + c)2 ≤ 3, hay a + b + c ≤ \(\sqrt 3 \)

Áp dụng bất đẳng thức Bunhia, có:

\({\left( {\sqrt {a + b} + \sqrt {b + c} + \sqrt {c + a} } \right)^2} \le \left( {a + b + b + c + c + a} \right).3\)

Q2 ≤ 2(a + b + c).3

Q2 ≤ 6\(\sqrt 3 \)

Suy ra: Q ≤ \(\sqrt[4]{{108}}\)

Vậy GTLN của Q là \(\sqrt[4]{{108}}\) khi \(\left\{ \begin{array}{l}a = b = c\\{a^2} + {b^2} + {c^2} = 1\end{array} \right. \Leftrightarrow a = b = c = \frac{1}{{\sqrt 3 }}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tanα = 2. Tính \(\tan \left( {\alpha - \frac{\pi }{4}} \right)\).

Xem đáp án » 13/07/2024 31,463

Câu 2:

Một đu quay ở công viên có bán kính bằng 10m. Tốc độ của đu quay là 3 vòng/phút. Hỏi mất bao lâu để đu quay quay được góc 270°?

Xem đáp án » 13/07/2024 25,494

Câu 3:

1 thùng rỗng nặng 1 yến. Khi đổ đầy nước thì thùng nước đó nặng 120kg. Hỏi một nửa thùng đó nặng bao nhiêu?

Xem đáp án » 13/07/2024 12,820

Câu 4:

Cho một cấp số nhân có công bội bằng 3 và số hạng đầu bằng 5. Biết số hạng chính giữa là 32805. Hỏi cấp số nhân đã cho có bao nhiêu số hạng?

Xem đáp án » 13/07/2024 7,874

Câu 5:

Khai triển hằng đẳng thức a4 + b4

Xem đáp án » 13/07/2024 6,431

Câu 6:

Cho hình trên biết AB // CD, CD // EF. Tính \(\widehat {ACD}\)\(\widehat {ACE}\).

Cho hình trên biết AB // CD, CD // EF. Tính \(\widehat {ACD}\) và \(\widehat {ACE}\).ho hình trên biết AB // CD, CD // EF. Tính góc ACD và góc ACE (ảnh 1)

Xem đáp án » 13/07/2024 5,601

Câu 7:

Cho tam giác ABC nhọn nội tiếp (O). Kẻ đường cao AD của tam giác ABC, đường kính AK của đường tròn (O). Gọi E và F lần lượt là hình chiếu của B và C trên AK. Gọi M và N lần lượt là trung điểm của BC và AC. Chứng minh: MN DF và M là tâm đường tròn ngoại tiếp tam giác DEF.

Xem đáp án » 13/07/2024 4,173

Bình luận


Bình luận