Câu hỏi:

19/08/2025 2,418 Lưu

Cho các số thực không âm a, b, c thay đổi thỏa mãn a2 + b2 + c2 = 1. Tìm GTLN của biểu thức Q = \(\sqrt {a + b} + \sqrt {b + c} + \sqrt {c + a} \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Áp dụng bất đẳng thức Cô–si cho 2 số không âm, ta có:

a2 + b2 ≥ 2ab

b2 + c2 ≥ 2bc

a2 + c2 ≥ 2ac

Cộng vế ta được:

2(a2 + b2 + c2) ≥ 2(ab + bc + ca)

3(a2 + b2 + c2) ≥ 2(ab + bc + ca) + a2 + b2 + c2

3(a2 + b2 + c2) ≥ (a + b + c)2

Mà a2 + b2 + c2 = 1 nên (a + b + c)2 ≤ 3, hay a + b + c ≤ \(\sqrt 3 \)

Áp dụng bất đẳng thức Bunhia, có:

\({\left( {\sqrt {a + b} + \sqrt {b + c} + \sqrt {c + a} } \right)^2} \le \left( {a + b + b + c + c + a} \right).3\)

Q2 ≤ 2(a + b + c).3

Q2 ≤ 6\(\sqrt 3 \)

Suy ra: Q ≤ \(\sqrt[4]{{108}}\)

Vậy GTLN của Q là \(\sqrt[4]{{108}}\) khi \(\left\{ \begin{array}{l}a = b = c\\{a^2} + {b^2} + {c^2} = 1\end{array} \right. \Leftrightarrow a = b = c = \frac{1}{{\sqrt 3 }}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tính được: 270° = \(\frac{{270}}{{180}}\pi = \frac{3}{2}\pi = \frac{3}{4}.2\pi \)

Vậy đu quay được góc 270° khi nó quay được \(\frac{3}{4}\) vòng

Ta có: đu quay quay được 1 vòng trong \(\frac{1}{3}\) phút

Vậy đu quay đu được \(\frac{3}{4}\) vòng trong: \(\frac{3}{4}.\frac{1}{3} = \frac{1}{4}\) phút.

Lời giải

\(\tan \left( {\alpha - \frac{\pi }{4}} \right) = \frac{{\tan \alpha - \tan \frac{\pi }{4}}}{{1 + \tan \alpha .\tan \frac{\pi }{4}}} = \frac{{2 - 1}}{{2 + 1}} = \frac{1}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP