Câu hỏi:

02/02/2024 1,491

Trong các số tự nhiên từ 1 đến 50 có bao nhiêu số chia hết cho 2 hoặc 3?

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Các số có 2 chữ số chia hết cho 2 trong các số từ 1 đến 50 là 2, 4, 6, …, 50 nên số các số chia hết cho 2 trong các số từ 1 đến 50 là 5022+1=25  (số).

Các số có 2 chữ số chia hết cho 3 trong các số từ 1 đến 50 là 3, 6, 9, …, 48 nên số các số chia hết cho 3 trong các số từ 1 đến 50 là 4833+1=16  (số).

Các số có 2 chữ số chia hết cho 6 trong các số từ 1 đến 50 là 6, 12, 18, …, 48 nên số các số chia hết cho 6 trong các số từ 1 đến 50 là 4866+1=8  (số).

Vậy số các số chia hết cho 2 hoặc 3 trong các số từ 1 đến 50 là: 25 + 16 8 = 33 (số).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Từ các chữ số 1, 3, 5, 7, 9 có thể lập được bao nhiêu số có 3 chữ số?

Xem đáp án » 02/02/2024 2,485

Câu 2:

Từ các chữ số 1, 3, 5, 7, 9 có thể lập được bao nhiêu số tự nhiên có 3 chữ số khác nhau?

Xem đáp án » 02/02/2024 2,021

Câu 3:

Từ các chữ số 1, 2, 4, 5, 8 có thể lập được bao nhiêu số tự nhiên có 3 chữ số khác nhau và chia hết cho 2?

Xem đáp án » 02/02/2024 536

Câu 4:

Tập hợp A gồm các số có 1 chữ số chia hết cho 2, tập hợp B gồm các số nguyên tố có 1 chữ số. Cả hai tập hợp trên có bao nhiêu phần tử?

Xem đáp án » 02/02/2024 527

Câu 5:

Từ các chữ số 0, 1, 2, 4, 5, 8 có thể lập được bao nhiêu số tự nhiên có 3 chữ số khác nhau?

Xem đáp án » 02/02/2024 491

Câu 6:

Từ 6 chữ số 1, 2, 4, 5, 7, 9 có thể lập được bao nhiêu số có 3 chữ số khác nhau không lớn hơn 220?

Xem đáp án » 02/02/2024 472

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store