Một lớp học có 28 nam và 24 nữ. Có bao nhiêu cách chia đều số học sinh vào các tổ với số tổ nhiều hơn sao cho số nam trong các tổ bằng nhau và số nữ trong các tổ bằng nhau? Cách chia nào để mỗi tổ có ít học sinh nhất?
Một lớp học có 28 nam và 24 nữ. Có bao nhiêu cách chia đều số học sinh vào các tổ với số tổ nhiều hơn sao cho số nam trong các tổ bằng nhau và số nữ trong các tổ bằng nhau? Cách chia nào để mỗi tổ có ít học sinh nhất?
Câu hỏi trong đề: 7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án !!
Quảng cáo
Trả lời:
Vì số nam và số nữ chia đều vào các tổ nên 24 ⋮ x, 28 ⋮ x
Hay x thuộc ƯC(24;28)
Có ƯCLN(24;28) = 22 = 4.
Nên x ∈ Ư(4) = {1;2;4}
Có 2 cách để chia đều số học sinh là chia thành 2 tổ và 4 tổ
Nếu chia thành 2 tổ thì mỗi tổ sẽ có: 28 : 2 = 14 nam và 24 : 2 = 12 nữ
Nếu chia thành 4 tổ thì mỗi tổ sẽ có: 28 : 4 = 7 nam và 24 : 4 = 6 nữ
Vậy chia thành 4 tổ thì mỗi tổ sẽ có ít học sinh nhất.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Xét ∆ADC và ∆BCD, ta có:
AD = BC (tính chất hình thang cân)
(gt)
DC chung
Do đó: ∆ADC = ∆BCD (c.g.c) ⇒
Trong ∆OCD ta có:
⇒ ∆OCD cân tại O
⇒ OC = OD (1)
AC = BD (tính chất hình thang cân)
⇒ AO + OC = BO + OD (2)
Từ (1) và (2) suy ra: AO = BO.
Vậy OA = OB; OC = OD.
b) Theo phần a có: OA = OB
∆ADC = ∆BCD (c.g.c)
⇒ ∆EDC cân tại E
⇒ EC = ED nên E thuộc đường trung trực CD
OC = OD nên O thuộc đường trung trực CD
E ≠ O. Vậy OE là đường trung trực của CD.
Ta có: BD= AC (tính chất hình thang cân)
⇒ EB + ED = EA + EC mà ED = EC
⇒ EB = EA nên E thuộc đường trung trực AB
OA = OB (chứng minh trên ) nên O thuộc đường trung trực của AB
E ≠ O. Vậy OE là đường trung trực của AB.
Lời giải
Tổng số hạng của dãy là:
(200 – 1) : 1 + 1 = 200 (số hạng)
Số lẻ bắt đầu từ 1 và kết thúc là 199, mỗi số lẻ cách nhau 2 đơn vị
Số các số lẻ là:
(199 – 1) : 2 + 1 = 100 (số lẻ)
Số các số chẵn là:
200 – 100 = 100 (số chẵn).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.