Câu hỏi:

12/07/2024 7,324

Cho tam giác ABC cân tại A, A^=20° . Trên AB lấy điểm D sao cho AD = BC. Tính góc BDC^, ACD^

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
tam giác abc cân tại a , góc a = 20 độ . trên cạnh ab lấy d sao cho ad = bc . tính góc bdc  acd ? (ảnh 1)

Trong tam giác ABC lấy điểm M sao cho tam giác BMC đều

BM = CM

M thuộc trung trực của BC

Lại có: AB = AC (ABC cân tại A)

A thuộc trung trực của BC

Do đó: AM là trung trực của BC

AM là phân giác góc BAC^

⇒ MAB^=MAC^=12BAC^=12.20°=10°

Vì tam giác ABC cân tại A nên: CBA^=BCA^=180°20°2=80°

Lại có: MCA^=ACB^MCB^=80°60°=20° (tam giác BMC đều)

Suy ra: CMA^=180°10°20°=150°

Xét tam giác CMA và tam giác ADC có:

AC chung

MCA^=DAC^=20°

CM = DA (=BC)

∆CMA = ∆ADC (c.g.c)

⇒ CDA^=CMA^=150°;ACD^=MAC^=10°

Mặt khác: CDA^+BDC^=180° (2 góc kề bù)

Suy ra: BDC^=180°CDA^=180°150°=30°

Vậy BDC^=30°;ACD^=10°

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình thang cân ABCD có AB // CD, O là giao điểm của hai đường chéo, E là giao điểm của hai đường thẳng chứa hai cạnh bên AD và BC. Chứng minh: OA = OB; OC = OD. (ảnh 1)

Xét ∆ADC và ∆BCD, ta có:

AD = BC (tính chất hình thang cân)

ADC^=BCD^ (gt)

DC chung

Do đó: ∆ADC = ∆BCD (c.g.c) ⇒ ACD^=BDC^

Trong ∆OCD ta có: ACD^=BDC^

∆OCD cân tại O

OC = OD (1)

AC = BD (tính chất hình thang cân)

AO + OC = BO + OD (2)

Từ (1) và (2) suy ra: AO = BO.

Vậy OA = OB; OC = OD.

b) Theo phần a có: OA = OB

∆ADC = ∆BCD (c.g.c)

∆EDC cân tại E

EC = ED nên E thuộc đường trung trực CD

OC = OD nên O thuộc đường trung trực CD

E ≠ O. Vậy OE là đường trung trực của CD.

Ta có: BD= AC (tính chất hình thang cân)

EB + ED = EA + EC mà ED = EC

EB = EA nên E thuộc đường trung trực AB

OA = OB (chứng minh trên ) nên O thuộc đường trung trực của AB

E ≠ O. Vậy OE là đường trung trực của AB.

Lời giải

Tổng số hạng của dãy là:

(200 – 1) : 1 + 1 = 200 (số hạng)

Số lẻ bắt đầu từ 1 và kết thúc là 199, mỗi số lẻ cách nhau 2 đơn vị

Số các số lẻ là:

(199 – 1) : 2 + 1 = 100 (số lẻ)

Số các số chẵn là:

200 – 100 = 100 (số chẵn).

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP